首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

2.
Improvement of an electrical activation protocol for porcine oocytes   总被引:16,自引:0,他引:16  
Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.  相似文献   

3.
The present studies were carried out to investigate the effects of intensity of dc pulse, number of dc pulse and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. In experiment 1, different fusion/activation intensity (two dc pulses of 0.4, 0.8, 1.2, 1.6 and 2.0 kV/cm for 30 micros, respectively) was carried out to investigate development of embryos. In experiment 2, the reconstructed oocytes were fused and activated with one, two or three dc pulses of 1.2 kV/cm for 30 micros. In experiment 3, reconstructed oocytes were equilibrated in TCM-199 medium for 0-6 h, respectively, and fused/activated with one dc pulse of 1.2 kV/cm for 30 micros. The reconstructed embryos were cultured in PZM-3 medium containing 0.3% BSA. When oocytes were fused with donor cell by two dc pulses of 0.4 kV/cm for 30 micros, the rates of cleavage and blastocyst formation were significantly lower (32.9% and 2.5%) than those of fused by 0.8 kV/cm (59.0% and 17.4%) or 1.2 kV/cm (63.3% and 18.4%), respectively. One dc pulse of 1.2 kV/cm for 30 micros was enough to fuse and activate embryos to develop to blastocyst (24.8%). Equilibration for 2-3 h in TCM-199 before fusion/activation was beneficial for improving the developmental ability of embryos produced by nuclear transfer (25.6-23.3% at blastocysts).  相似文献   

4.
Kragh PM  Du Y  Corydon TJ  Purup S  Bolund L  Vajta G 《Theriogenology》2005,64(7):1536-1545
The purpose of our work was to establish an efficient protocol for activation of porcine cytoplast-fibroblast constructs produced by the handmade cloning technique. Firstly, we investigated a combined electrical and chemical activation protocol for parthenogenetic development of in vitro matured zona-free oocytes. Oocytes were activated by one 80 micros pulse and subsequently cultured in cytochalasin B and cycloheximide. Developmental rates of blastocysts from activated oocytes were 49+/-1 and 40+/-2%, when using one 80 micros pulse of 0.85 or 1.25 kV/cm, respectively. The activation procedure was further confirmed by a simultaneous re-fusion and activation of bisected oocytes, resulting in a blastocyst rate of 41+/-8%. Secondly, the activation protocol was applied in the handmade cloning technique. In vitro matured zona-free porcine oocytes were bisected and halves containing no chromatin, i.e. the cytoplasts, were selected. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused to one fibroblast by one 80 micros pulse of 1.25 kV/cm. After 1h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously by one 80 micros pulse of 0.85 kV/cm, and subsequently cultured in cytochalasin B and cycloheximide. The development of reconstructed embryos to the blastocyst stage was in average 21+/-4%, and total blastocyst cell counts were in average 48+/-3. Thus, the combined electrical and chemical activation procedure resulted in efficient blastocyst development in the handmade cloning technique.  相似文献   

5.
Pig oocytes were matured in vitro in a modified M-199 medium for 44 h, subjected to electrical stimulation and scored for activation 6 h later. Sham pulsed oocytes, exposed to electroporation medium and an a.c. field, did not develop the female pronucleus any more frequently than occurs spontaneously (8.3% within 50 h of culture). However, a single d.c. pulse proved extremely efficient in activating pig oocytes. Pulses of 0.75-1.65 kV cm-1 lasting 30 or 100 microseconds activated at least 90% of matured oocytes. The developmental pathway taken by the activated oocytes depended on the parameters of the pulse. The lowest effective stimulation (0.45 and 0.60 kV cm-1 for 30 microseconds) frequently produced oocytes that remained in pre-pronuclear stages of activation (29.4 and 42.3%, respectively). Extrusion of the second polar body and creation of one pronucleus was the most frequent type of activation (in up to 88.2% among the activated oocytes). The strongest stimulations used (1.05-1.65 kV cm-1 for 100 microseconds) often yielded oocytes that failed to extrude the second polar body and formed two or more pronuclei (up to 56.3%). Under optimal stimulation (0.75 kV cm-1), the activated oocytes proceed synchronously to interphase of the first mitotic division. Anaphase II is reached within 30 min and telophase Ii at 1 h after application of the pulse. The second polar body is extruded about 2 h after activation. Well-defined swelling pronuclei were found in oocytes 5-6 h after activation. The relationship between the stage of oocyte maturation and susceptibility to activation was investigated. The period of culture in which the oocytes develop the activation competence (32-36 h of culture) overlapped with the period in which the oocytes complete meiosis (28-38 h). This suggests that ageing in meiotic arrest is not essential for pig oocytes to become activated by electric pulses. Activation of pig oocytes was accompanied by release of cortical granules. In sections of control (metaphase II) oocytes, an average of 7.3 intact cortical granules per 10 microns of overlying cytoplasmic membrane was found. This number dropped to 1.5 in 10 microns within 30 min after the pulse.  相似文献   

6.
The present study was undertaken to determine conditions for parthenogenetic activation of mouse and rabbit eggs by electric stimulation in vitro. The cumulus-free eggs were submitted to square direct current pulses at output voltage of 1.0 to 2.5 kV/cm for 25 to 200 μsec. The best conditions for the activation of mouse eggs were 1.5 kV/cm for 100 μsec, in which 78% of eggs were activated, 32% of which developed to blastocysts in vitro. When the nonelectric solution (0.3M mannitol) was used for electric stimulation, the activation rate was quite low (16%). Optimal conditions for activation of rabbit eggs were 1.5 kV/cm for 200 μsec, in which 77% of eggs were activated, 25% of which developed to blastocysts. Unlike mouse eggs, rabbit eggs frequently had three pronuclei after electric stimulation. It is clearly shown that electric stimulus can induce parthenogenetic activation of the mouse and rabbit eggs in vitro.  相似文献   

7.
Naruse K  Quan YS  Kim BC  Lee JH  Park CS  Jin DI 《Theriogenology》2007,68(5):709-716
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.  相似文献   

8.
The objective of this study was to optimize intracytoplasmic sperm injection (ICSI), and to assess the effects of membrane-damaged sperm on development of porcine oocytes following ICSI. For optimization of development following the ICSI process, sperm injected oocytes were activated 0.5-1.0 hr after ICSI with 1 x 30 micros pulse of 1.2, 1.7, 2.2, and 2.7 kV/cm DC in experiment 1. After 7-days of culture ICSI oocytes activated with [x1]2.2 kV/cm produced more blastocyts ([x2]34.4%, P < 0.05) than other treatment groups. In experiment 2, oocytes were activated with 1 x 30 micros pulse of 2.2 kV/cm at either 0, 1.5, 3, or 6 hr after ICSI. Oocytes activated 1.5 hr after [x3]ICSI yielded more blastocysts (27.6%)[M4] than in other treatments. In experiment 3, sperm were briefly exposed to 0.1% Triton X-100 to induce membrane damage. Live-dead staining of Percoll-sorted untreated spermatozoa (frozen-thawed) used in this study showed that over 96% were "alive" whereas none were "alive" after Triton X-100 treatment. The rate of development to blastocyst of oocytes injected with Triton X-100 treated sperm combined with electrical activation (EA) at 1 x 30 micros pulse of 2.2 kV/cm (EA, 40.0%) was the best, when compared with those injected with untreated sperm plus EA (P < 0.05). In experiment 4, the development rate of oocytes to the blastocyst stage ([x5]32.1%) following injection of a sperm head only was not significantly different from that of oocytes injected with whole sperm (31.0%). In conclusion, we found that an intact membrane and tail structures of pig spermatozoa are not essential for embryo development by ICSI, and furthermore, dead porcine spermatozoa, at an early stage of necrosis caused by plasma membrane damage, support better embryo development than do live non-damaged sperm.  相似文献   

9.
卵龄和脉冲持续时间对小鼠卵母细胞电活化效果的影响   总被引:12,自引:0,他引:12  
谭景和  周琪 《动物学报》1995,41(3):327-331
实验研究了相同电场强度,一次脉冲条件下,不同脉冲持续时间和不同卵龄对小鼠卵母细胞电活化效果的影响,结果说明:(1)在场强0.45KV/cm,一次脉冲持续时间为10、20和40μs时,卵母细胞活化率很低,仅为9.8%,5.5%和12%,当脉冲持续80、160、320、640和280μs时,活化率明显升高,分别为36.5%、53.3%,59.7%,51.2%和39.4%,脉冲持续时间对卵线细胞碎裂率影  相似文献   

10.
Intracellular Ca2+ response of rabbit oocytes to electrical stimulation.   总被引:5,自引:0,他引:5  
Electrical stimulation is known to cause activation in mammalian oocytes, possibly by eliciting an elevation in intracellular calcium (Ca2+). This study reports intracellular Ca2+ concentrations in mature rabbit oocytes using the Ca2+ indicator fura-2. Calcium levels were determined prior to, during, and after the administration of an electrical pulse (3.6 kV/cm for 60 microseconds). Baseline Ca2+ levels ranged from 30 to 90 nM. The intracellular Ca2+ transient evoked by a pulse, peaked at 11 sec, was highly variable in amplitude (40-300 nM) and returned to prepulse levels within 300 sec. Electrically stimulated oocytes did not exhibit repetitive Ca2+ transients. The size of the cytoplasmic Ca2+ rise was influenced by the duration of the pulse, the field strength and the concentrations of external Ca2+ rise was influenced by the duration of the pulse, the field strength and the concentrations of external Ca2+ (P less than 0.05). Oocytes electrically stimulated in the presence of 100 microM CaCl2, which evoked Ca2+ transients with a mean magnitude of 120 nM, activated at a higher rate (P less than 0.05) than oocytes stimulated in the presence of either higher or lower levels of external Ca2+. Although oocytes electrically shocked at 16-18 hr after administration of human chorionic gonadotropin (hphCG) activated at a lower rate than oocytes stimulated at 22-24 hphCG (P less than 0.05), their intracellular Ca2+ response to the pulse was similar (P less than 0.05). These results indicate that electrical pulse parameters and extracellular Ca2+ concentrations can be used to modulate intracellular Ca2+ levels and optimize oocyte activation rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The in vitro developmental potential of porcine nuclear transfer (NT) embryos was evaluated. Oocytes were matured for 42-44 h, and metaphase II-oocytes were enucleated. Fetal fibroblasts infected with the enhanced green fluorescent protein (EGFP) gene were serum-starved for 3-5 days. A single cell was injected into the perivitelline space of the enucleated oocytes. The reconstructed oocytes were allocated to different fusion and activation conditions. In experiment 1, two different fusion/activation conditions were compared: two pulses of 1.2 kV/cm for 30 microsec (group A), or one pulse of 1.6 kV/cm for 30 microsec followed in 30 min by one pulse of 1.2 kV/cm for 30 microsec (group B). Parthenogenetic controls were created by using the group A parameter. The fusion rate in group A (mean +/- SEM, 68.4% +/- 3.9%) was higher (P < 0.05) than in group B (59.4% +/- 2.3%). The rates of cleavage (50.1% +/- 4.6% to 62.8% +/- 5.5%) were not different among control and treatment groups. However, the rate of parthenogenetic control embryos developing to the blastocyst stage (18.1% +/- 3.1%) was higher (P < 0.05) than the rate of NT embryos (5.9% +/- 1.7% and 4.9% +/- 2.5%). In experiment 2, we compared two pulses of 1.2 kV/cm (group C) versus two pulses of 1.3 kV/cm (group D). For two control groups, the same pulses as those given to group C or D, respectively, were supplied. The fusion rate in group D (70.6% +/- 4.2%) was higher (P < 0.05) than in group C (58.9% +/- 2.7%). The cleavage rates were not different among control and treatment groups (58.1% +/- 8.1% to 73.6% +/- 6.0%). However, the rate of embryos developing to the blastocyst stage in group D (3.5% +/- 1.7%) was lower (P < 0.05) than in controls and group C (11.4% +/- 2.0% to 16.4% +/- 1.1%). In experiment 3, we examined whether the presence of cytochalasin B (CB) during donor cell injection affects the development of NT embryos. The fusion rate of oocytes in the group with CB (78.4% +/- 1.4%) was higher (P < 0.05) than in the group without CB (70.9% +/- 0.2%). The cleavage rate of the control group (85.5% +/- 4.9%) was higher (P < 0.05) than those of the treatment groups (61.6% +/- 2.7% and 63.9% +/- 4.3%). However, the rates of embryos developing to the blastocyst stage (8.1% +/- 2.5% to 19.1% +/- 6.0%) and the mean cell number of blastocysts (29.4 +/- 5.2 to 45.7 +/- 6.4) were not different among control and treatment groups. Green fluorescence was observed at all stages in NT embryos. These results indicate that two pulses of 1.2 kV/cm are enough for fusion/activation of NT embryos to develop to the blastocyst stage, and that the presence of CB during donor cell injection is not necessary for early development of NT embryos.  相似文献   

12.
This work was undertaken to improve conditions for in vitro maturation and activation of porcine oocytes. Experiments were designed to compare: (i) electrical pulse frequency, (ii) methods of oocyte preparation, (iii) maturation conditions, and (iv) electrical poration medium on development. Oocytes were harvested by follicle dissection or aspiration, co-cultured with follicle shells in M199 based medium with or without media changes at 38.5°C in 5% CO2 under non-static conditions for 48 h and electroactivated using single or multiple pulses (current strength 1.0 kV/cm for 50 μs in 0.28 M inositol or mannitol based media with 10 mM histidine) at different time intervals. The results showed: (i) neither the pulse frequency nor the pulse interval influenced rates of pronuclear formation but multiple pulse activation (3 pulses at 5 min intervals) induced a higher incidence of development and progression through the 4-cell block in contrast to one pulse activation; (ii) both the rate of nuclear maturation (88.6% vs. 77.6%) and post-activation cleavage (89.8% vs. 67.4%) were higher (P < 0.05) when oocytes were collected by follicle dissection rather than by aspiration; (iii) while changing to a hormone-free medium at 24 h was without effect on maturation (91.9% vs. 91.7%), rate of cleavage (81.6% vs. 72.3%, P < 0.05) at 24 h was enhanced by the medium change; and (iv) oocytes activated with 3 pulses 5 min apart in mannitol based medium at 48–49 h and at 53–54 h formed pronuclei at a comparable rate but subsequent parthenogenetic development was higher in the older eggs. By contrast, inositol-based medium supported development of young and old eggs equally well. Calcium and magnesium ions are, however, necessary in both mannitol and inositol media for activation of porcine oocytes matured in vitro. The present results suggest that optimal parthenogenetic activation and early development of IVM pig oocytes could be obtained if oocytes are harvested by dissection, cultured for 24 h in hormone-containing medium before being placed in hormone free medium and activated at 48 h in inositol based medium using a three pulse activation system.  相似文献   

13.
Suzuki H  Ju JC  Yang X 《Cloning》2000,2(2):69-78
Oocyte activation is a critical component of the current animal cloning scheme. This study was designed to examine surface characteristics of bovine oocytes by scanning electron microscopy (SEM) after activation by calcium ionophore A23187 (A23187) and electric pulse combined with cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) treatments. In vitro matured (IVM) oocytes were activated then harvested at 0 to 19 hours after the onset of treatments for SEM processing. The zona pellucida (ZP) of untreated IVM oocytes exhibited an open mesh structure. The ZP surface showed little changes after A23187 alone, but dramatically changed to a less porous surface 3 hours after combined treatments with CHX or 6-DMAP. The vitelline membrane of IVM oocytes was covered with well-developed microvilli (MV). The MV became shorter (0.83 vs. 1.35 microm, p < 0.01) 8 hours after A23187 treatment alone. The vitelline membrane was altered in all oocytes examined 3 hours after incubation with A23187 plus CHX or 6-DMAP. A 1.5-fold increase in the diameter of MV in the CHX group and a higher incidence of large cytoplasmic protrusions (more than 1 microm width) in the 6-DMAP group were observed. After removal of inhibitors, the surface morphologies of the ZP and vitelline membrane were returned nearly to those of untreated IVM oocytes in both groups. The present study clearly showed that surface characteristics of the bovine oocyte were more profoundly changed by a combination of agents for parthenogenetic stimulation, and that the ultrastructural effects were reversible.  相似文献   

14.
15.
The rabbit was used as a model for nuclear transfer. A critical step in nuclear transfer is oocyte activation, which was evaluated in this research. Optimal field strength of an electric stimulus for activation was examined. A significantly higher activation rate in all criteria tested was achieved when oocytes were activated electrically with a field strength of 2.4 kV/cm versus 1.2 or 1.8 kV/cm. Also, electrical stimulation with combined alternating current (AC) and direct current (DC) was superior to DC stimulation alone for activation. In another study involving 586 oocytes, exposure of oocytes to cytochalasin B for 1 h followed by activation with electrical stimulation significantly improved development of the oocytes to blastocyst stage compared to oocytes without cytochalasin B pre-exposure (38% vs 26%, p less than 0.05). Cytochalasin B exposure alone (control), however, had no effect on activation. Exposing oocytes to activation medium without electrical stimulation also activated some oocytes. In the nuclear transfer experiment, blastomeres from 8-cell embryos cultured for 20-24 h to the 32-64-cell stage were used as nuclear donor cells. Of 491 oocytes used, 459 (93%) survived the enucleation and fusion procedure, 370 (81%) fused, and 284 (77%) developed into 2-4-cell embryos. A total of 243 of these 2-4-cell embryos were transferred to 15 pseudopregnant recipients and produced 8 young (3%). Although the efficiency is low, this study demonstrated that rabbit morulae cultured for 20-24 h to the 32-64-cell stage as nuclear donors for transfer remain totipotent.  相似文献   

16.
The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.  相似文献   

17.
Freshly ovulated rabbit oocytes were activated parthenogenetically by periodically repeated calcium stimuli generated by electric field pulses applied onto the plasma membrane. Electric field pulses of 1.8 kV cm-1 were delivered every 4 min for 1 h 30 min (22 double pulses) in a specially designed chamber. Before each pulse, the culture medium was replaced by an isotonic glucose solution containing 10 microM Ca2+. The effects of modulating the ionic stimuli (by changing the duration of EF pulse) on a postactivation reaction, and/or on the pre- and postimplantation development, were studied. The rate of activation increased progressively as the pulse duration lengthened. For 22 pulses of 200 microseconds, 13% of oocytes were activated versus 100% for 1200 microseconds. The uniformity of the parthenogenetic response was obtained when oocytes were exposed to a series of pulses within which the reduction of pulse duration followed a negative exponential law. The influence of such activating treatment on the preimplantation development was tested using two treatments of 22 pulses with a total pulse duration equal to 14,868 and 11,228 microseconds, respectively. For the weaker treatment, a lower proportion of embryos underwent compaction and those that compacted were irregular. In contrast, the majority of embryos resulting from the stronger treatment compacted and developed into blastocysts. The most significant result that emerges from this study is that the level of stimulation affects in vitro developmental potency after the third cleavage division. The postimplantation viability of parthenogenetic eggs was tested and the results showed that parthenogenetic rabbit embryos died at a similar stage of development to the parathenogenetic mouse embryos. But, in the present series, high implantation rates and embryonic development (66%) till day 10-11 of pregnancy were obtained after the appropriate pulsatile EF treatment of oocytes. The parthenogenetic fetuses were of smaller size than the controls, but the development of the trophoblast tissue was proportional to the development of the fetuses. Anomalies of fetuses were also observed. This study reveals that activation is not a time-limited event and that the type of activating treatment has a marked effect on the ability of the resulting parthenogenetic embryos to develop to the early postimplantation stages. The sustained alteration of the cytoplasmic activity provides a useful tool to study the function of embryonic or somatic nuclei introduced during the earliest stages of activation.  相似文献   

18.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

19.
Tetraploid bovine blastocysts were produced experimentally by electrofusion of in vitro matured and fertilized, zona-enclosed two-cell embryos (33-35 hr after initiation of sperm-egg incubation) using three fusion protocols. Field strengths of 1.0, 1.4, and 2.4 kV/cm were tested and the rate of fusion, subsequent cleavage, and blastocyst development were measured for each. High rates of fusion (76.5% +/- 2.8%), cleavage (72.5% +/- 7.4%) and blastocyst development (56.1% +/- 6.4%) were achieved with the application of 1. 4 kV/cm as a single 100-microseconds pulse. Embryos were scored 30 and 60 min after stimulation for fusion. No time effect for fusion, cleavage, or blastocyst development was observed. Chromosome preparations of day 7 blastocysts revealed 12.5% of fused embryos were tetraploid. This is a significant increase from that found in nonfused embryos where spontaneous tetraploidy did not occur. An electrical stimulus of 1.0 kV/cm applied as two 50-microseconds pulses produced significantly less one-cell embryos (64.2% +/- 3.0%) compared to 1.4 kV/cm while cleavage (79.9% +/- 3.4) and blastocyst development (44.6% +/- 4.0%) were not different from that for unexposed control embryos (89.5% +/- 2.3% and 57.2% +/- 3.2%, respectively). Embryos fused at 2.4 kV/cm applied as a single 30-microseconds pulse (69.7% +/- 5.7%) showed significantly lower cleavage (72.1% +/- 3.7%) and blastocyst rates (40.2% +/- 4.6%) compared to the unexposed control.  相似文献   

20.
Freshly ovulated (12 hr post hCG) F1 (C57BL/6 x CBA) hybrid mouse oocytes were parthenogenetically activated by repetitive elevation of Ca2+ induced by carefully controlled electrical pulses. Different patterns of stimulation were employed to examine the role of repetitive calcium changes on meiotic resumption and pronuclear development. In the first series of experiments oocytes received 33 electrical pulses of 1.8 kV/cm delivered every 4 min. The pulse duration decreased according to a negative exponential equation from a 900-microseconds first pulse to give a total pulse duration of 18.721 msec. The strength of calcium stimuli was varied by changing the concentration of CaCl2 in the medium. Ninety-eight percent of the oocytes stimulated with 12 microM calcium extruded the second polar body by the end of treatment and 92% completed pronuclear formation between 3.5 and 8 hr after the first pulse. For higher or lower Ca2+ concentrations the proportion of oocytes developing pronuclei decreased; the timing of pronuclear formation was retarded and the majority of oocytes failed to form a pronucleus after extrusion of the second polar body. In the second series of experiments, the strength of the calcium stimuli was modulated by changing the duration of the 33 electrical pulses given in the presence of 12 microM calcium. By increasing the total pulse duration to 33.958 msec, 100% of the oocytes activated and completed pronuclear formation between 3 and 5 hr after the first electric pulse. Stimulation protocols of lower total pulse duration (less than 18.721 msec) gave rise to high rates of partial activation (up to 95%). Examination of these partially activated oocytes showed metaphases with haploid sets of chromatids characteristic of third meiotic metaphase arrest. The results indicate that repetitive calcium stimuli can regulate the rate and extent of meiotic resumption and the time course of pronuclear formation during mouse oocyte activation. They suggest that meiotic resumption in mammalian oocytes is regulated by the amplitude and frequency of cytosolic calcium oscillations induced by the activating stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号