首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.  相似文献   

2.
To better understand temporal variability in soil denitrification, denitrifying enzyme activity (DEA) and denitrifier populations (as determined by most-probable-number [MPN] counts) were measured in field and laboratory experiments. Measurements of DEA and MPN provided highly contradictory indications of denitrifier dynamics. In laboratory incubations, under conditions favoring active denitrification, the synthesis of new denitrifying enzymes and the actual amount of denitrification were closely related. In other experiments, however, both DEA and MPN counts were poor indicators of actual denitrification. In some cases, we found significant increases in DEA but no significant production of N gas. Except with unnaturally high substrate amendments, changes in DEA were small relative both to the persistently high DEA background and to changes in MPN. As estimated by MPN counts, denitrifier populations increased significantly during denitrification events. It was apparent that only a small fraction of the denitrifiers were included in the MPN counts, but it appeared that this isolatable fraction increased during periods of active denitrifier growth. Use of DEA as an index of biomass of cells which have synthesized denitrifying enzymes suggested that denitrifier populations were persistent, stable, and much larger than indicated by MPN procedures.  相似文献   

3.
Of the 29 potentially denitrifying organisms isolated from a denitrifying reactor (DNR) of a fertilizer company, two isolates; I-4 and I-5 were recognized as denitrifiers. Under aerobic conditions, with fusel oil as the carbon source, the organisms decreased nitrate from 1200 mg l–1 to 100 mg l–1 in 48 h. Optimal growth conditions for biological removal of nitrate were established in batch culture. The system was scaled up to 4-L and 50-L bioreactors under continuous culture conditions. Up to 95–100% nitrate removal was achieved in the 50-L bioreactor at a COD:NO3–N ratio of 3.45 with a retention time of 48 h. The isolates showed 1.5 fold higher denitrifying activity than reported previously.  相似文献   

4.
The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose.  相似文献   

5.
In order to identify potential microorganisms with high denitrifying capacity from tannery wastewaters, 1000 pure cultures of bacterial isolates from Modjo Tannery Pilot and Ethio-tannery wastewater treatment plants (WWTP), in Ethiopia, were investigated. Twenty-eight isolates were selected as efficient denitrifiers. These were Gram-negative rods, oxidase and catalase positive denitrifying organisms. The 28 denitrifying strains were further classified according to their biochemical fingerprints into three different phylogenetic groups (BPT1, BPT2 and BPT3) and seven singles. Isolates B79T, B11, B12, B15, B28 and B38 belonging to the BPT3 cluster were found to be the most efficient denitrifying bacteria. All phenotypic studies, including cellular fatty acid profiles, showed that the 6 BPT3 isolates were closely related to each other. The 16S rRNA partial sequence analysis of type strain B79T(CCUG 45880) indicated a sequence similarity of 99% to Brachymonas denitrificans JCM9216 (D14320) in the β-subdivision of proteobacteria. Further studies of the effects of chromium III and sulphide on the six Brachymonas denitrificans strains indicated that denitrification by the isolates were inhibited 50% at concentrations of 54 and 96 mg/l, respectively. The efficient isolates characterized in this study are of great value because of their excellent denitrifying properties and relatively high tolerance to the concentrations of toxic compounds (70 mg chromium/l and 160 mg sulphide/l) prevailing in tannery wastewaters.  相似文献   

6.
7.
Abstract Little information exists about nitrogen losses through microbial activity during treatment of solid urban waste (SUW) by processes such as composting. In the present study, in addition to evaluating the pattern of nitrogen losses by denitrification at different stages of the process, a comparison between the method of Pochon and Tardieux, and an improved gas chromatographic method for estimating denitrifying populations was undertaken, Though the MPN (Most Probable Number) enumerations were higher using the colorimetric method than the gas chromatographic one, the patterns of the two graphs showing numbers of denitrifiers during composing were the same. The highest numbers were revealed immediately after loading the reactor (107–108/g d.w.), lower numbers of denitrifiers were found in the second sampling corresponding to the thermophilic phase (103–104/g d.w.). These numbers increased gradually as the waste material stabilized (10th to 123rd day of composting) to again reach values of 107–108/g d.w.  相似文献   

8.
Two hundred and fifty strains, all of them representatives of native Bradyrhizobium sp., isolated from soils cultivated with soybean have been characterized by their denitrification activity. In addition, the denitrification potential of those soils was also measured by evaluating the most-probable-number (MPN) of denitrifying bacteria and the denitrification enzyme assay (DEA). Of the 250 isolates tested, 73 were scored as probable denitrifiers by a preliminary screening method. Only 41 were considered denitrifiers because they produced gas bubbles in Durham tubes, cultures reached an absorbance of more than 0.1 and NO3− and NO2− were not present. Ten of these 41 were selected to confirm denitrification and to study denitrification genes. According to N2O production and cell protein concentration with NO3−, the isolates could be differentiated in three categories of denitrifiers. The presence of the napA, nirK, norC and nosZ genes was detected by production of a diagnostic PCR product using specific primers. RFLP from the 16S-23S rDNA spacer region (IGS) revealed that denitrifiers strains could be characterized as Bradyrhizobium japonicum and strains which were non-respiratory denitrifiers as B. elkanii.  相似文献   

9.
beta-Glycosidase activities present in the human colonic microbiota act on glycosidic plant secondary compounds and xenobiotics entering the colon, with potential health implications for the human host. Information on beta-glycosidases is currently limited to relatively few species of bacteria from the human colonic ecosystem. We therefore screened 40 different bacterial strains that are representative of dominant bacterial groups from human faeces for beta-glucosidase and beta-glucuronidase activity. More than half of the low G+C% Gram-positive firmicutes harboured beta-glucosidase activity, while beta-glucuronidase activity was only found in some firmicutes within clostridial clusters XIVa and IV. Most of the Bifidobacterium spp. and Bacteroides thetaiotaomicron carried beta-glucosidase activity. A beta-glucuronidase gene belonging to family 2 glycosyl hydrolases was detected in 10 of the 40 isolates based on degenerate PCR. These included all nine isolates that gave positive assays for beta-glucuronidase activity, suggesting that the degenerate PCR could provide a useful assay for the capacity to produce beta-glucuronidase in the gut community. beta-Glucuronidase activity was induced by growth on d-glucuronic acid, or by addition of 4-nitrophenol-glucuronide, in Roseburia hominis A2-183, while beta-glucosidase activity was induced by 4-nitrophenol-glucopyranoside. Inducibility varied between strains.  相似文献   

10.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a central enzyme in the anaerobic degradation of organic carbon, which utilizes a common intermediate (benzoyl-CoA) in the metabolism of many aromatic compounds. The diversity of benzoyl-CoA reductase genes in denitrifying bacterial isolates capable of degrading aromatic compounds and in river and estuarine sediment samples from the Arthur Kill in New Jersey and the Chesapeake Bay in Maryland was investigated. Degenerate primers were developed from the known benzoyl-CoA reductase genes from Thauera aromatica, Rhodopseudomonas palustris, and Azoarcus evansii. PCR amplification detected benzoyl-CoA reductase genes in the denitrifying isolates belonging to alpha-, beta-, or gamma-Proteobacteria as well as in the sediment samples. Phylogenetic analysis, sequence similarity comparison, and conserved indel determination grouped the new sequences into either the bcr type (found in T. aromatica and R. palustris) or the bzd type (found in A. evansii). All the Thauera strains and the isolates from the genera Acidovorax, Bradyrhizobium, Paracoccus, Ensifer, and Pseudomonas had bcr-type benzoyl-CoA reductases with amino acid sequence similarities of more than 97%. The genes detected from Azarocus strains were assigned to the bzd type. A total of 50 environmental clones were detected from denitrifying consortium and sediment samples, and 28 clones were assigned to either the bcr or the bzd type of benzoyl-CoA reductase genes. Thus, we could determine the genetic capabilities for anaerobic degradation of aromatic compounds in sediment communities of the Chesapeake Bay and the Arthur Kill on the basis of the detection of two types of benzoyl-CoA reductase genes. The detected genes have future applications as genetic markers to monitor aromatic compound degradation in natural and engineered ecosystems.  相似文献   

11.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-beta-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

12.
Nitrogen and carbon components in domestic modified wastewater were completely removed by simultaneous nitrification and denitrification using a membrane-aerated biofilm reactor where biofilm was fixed on a hollow-fiber membrane. To measure the spatial distribution of pH, ammonium and nitrate ions and to observe microbes inside the biofilm fixed on the membrane, microelectrodes and the fluorescence in situ hybridization (FISH) method were applied. Due to plug flow in the vertical direction (from the bottom to the top of the reactor), ammonium nitrogen was gradually removed and negligible nitrate nitrogen was detected throughout the reactor. FISH revealed that ammonia-oxidizing bacteria were mainly distributed inside the biofilm and other bacteria, which included denitrifying bacteria, were mainly distributed outside the biofilm and over the suspended sludge. In order to characterize bacterial activity in the vertical direction of the reactor, nitrification rates at lower, central and upper points were calculated using microelectrode data. The nitrification rate at the lower point was 7 and 125 times higher than those at the central and upper points, respectively. These results show that the removal of carbon and nitrogen compounds was accomplished efficiently by using various kinds of bacteria distributed vertically and horizontally in a single reactor.  相似文献   

13.
The aim of this study was to determine the effect of the rhizosphere of maize on the diversity of denitrifying bacteria. Community structure comparison was performed by constructing a collection of isolates recovered from bulk and maize planted soil. A total of 3240 nitrate-reducing isolates were obtained and 188 of these isolates were identified as denitrifiers based on their ability to reduce nitrate to N2O or N2. 16S rDNA fragments amplified from the denitrifying isolates were analysed by restriction fragment length polymorphism. Isolates were grouped according to their restriction patterns, and 16S rDNA of representatives from each group were sequenced. A plant dependent enrichment of Agrobacterium-related denitrifiers has been observed resulting in a modification of the structure of the denitrifying community between planted and bulk soil. In addition, the predominant isolates in the rhizosphere soil were not able to reduce N2O while dominant isolates in the bulk soil evolve N2 as a denitrification product.  相似文献   

14.
Relatively high most probable number (MPN) counts of chemolithotrophic nitrite oxidizers were present in water-saturated soils compared with MPNs and activity of ammonia oxidizers. These high numbers of nitrite oxidizers were confirmed by fluorescent antibody counts and potential activity measurements. Application of different nitrite concentrations in the MPN procedure discriminated within the community of nitrite oxidizers and revealed a large number of nitrite-sensitive nitrite oxidizers and a subcommunity of nitrite-insensitive nitrite oxidizers. The size of this subcommunity was small but corresponded with the low numbers of ammonium oxidizers. Numbers of nitrite-sensitive nitrite oxidizers outnumbered the ammonia oxidizing bacteria by 2–4 orders of magnitude in these soils. The possibility is discussed that the fraction of the nitrite-insensitive cells was active as aerobic nitrite oxidizers, whereas the nitrite-sensitive cells represented an inactive group of nitrite oxidizers growing as heterotrophs or as anaerobes reducing nitrite. In this situation, both MPN enumerations at a low nitrite concentration and activity measurements could give false information about the size of the in situ nitrite-oxidizing community.  相似文献   

15.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-β-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

16.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

17.
Terrestrial sites contaminated with 2,4,6-trinitrotoluene (TNT) are a widespread and persistent problem and often contain non-vegetated areas with TNT concentrations well in excess of 1000 mg kg(-1). In this study, we examined the effect of TNT on denitrification activity in field soils, and compared the sensitivity of denitrifying enzymes to TNT. DNA probes assessed the prevalence of nirS, nirK and nosZ (encoding cd(1) or copper nitrite reductase and nitrous oxide reductase, respectively), denitrifying genotypes in the culturable and total microbial community. The nitrate (NaR), nitrite (NiR) and nitrous oxide (N(2)OR) reductase activities in field soil and in isolates were assessed by gas chromatography. The relative occurrence of the nirK, nirS or nosZ genotypes increased in the cultured community and in total uncultured community DNA as nitroaromatic concentrations increased. However, denitrifying activity decreased in response to increasing TNT concentrations, with an IC(50) for NaR+NiR+nitric oxide reductase (NOR) of 400 mg TNT kg(-1) soil and for N(2)OR of 26 mg TNT kg(-1) soil. The denitrifying activity of four soil isolates also decreased in response to TNT, with N(2)OR activity being three times more sensitive to TNT than NaR+NiR+NOR activity. Interestingly, there were 118 times more nirK isolates than nirS isolates in uncontaminated soil but only 1.5 times more in soil containing 17400 mg kg(-1) TNT. The results from this study indicated that TNT reduced denitrification activity in field soils, and N(2)OR was much more sensitive to TNT than NaR+NiR+NOR.  相似文献   

18.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

19.
In this study, phosphate-accumulating bacteria achieved complete phosphate removal in two different systems: an anaerobic-anoxic sequencing batch reactor and an anaerobic-aerobic sequencing batch reactor. This result shows that phosphate-accumulating bacteria in the A2 SBR can use nitrate as terminal electron acceptor instead of oxygen. Phosphate-accumulating bacteria accumulated phosphate with a rates between 30 and 70 mg P/L/h in the A/O SBR and between 15 and 32 mg P/L/h in the A2 SBR. Twenty denitrifying isolates were screened from A2 SBR and nine from A/O SBR. Identification of these isolates by the Biolog system and the API 20 NE identification kit revealed that the most active denitrifiers in both SBRs reactors were species of Ochrobactrum, Pseudomonas, Corynebacterium, Agrobacterium, Aquaspirillum, Haemophilus, Xanthomonas, Aeromonas, and Shewanella. The most active phosphate accumulating and denitrifying bacteria were identified as Agrobacterium tumefaciens B, Aquaspirillum dispar, and Agrobacterium radiobacter. This study showed that the active phosphate accumulating-bacteria were also the most efficient denitrifying bacteria in both reactors. Received: 24 February 1998 / Accepted: 21 July 1998  相似文献   

20.
Although, there have been many published bacterial strains aerobically degrading the heterocyclic amine compounds, only one strain to date has been reported to degrade pyrrolidine under denitrifying conditions. In this study, denitrifying bacteria degrading pyrrolidine and piperidine were isolated from diverse geological and ecological origins through selective enrichment procedures. Based on the comparative sequence results of 16S rRNA genes, 30 heterocyclic amine-degrading isolates were grouped into ten distinct phylotypes belonging to the genera Thauera, Castellaniella, Rhizobium, or Paracoccus of the phylum Proteobacteria. The representative isolates of individual phylotypes were characterized by phylogenetic, phenotypic and chemotaxonomical traits, and dissimilatory nitrite reductase gene (nirK and nirS). All isolates completely degraded pyrrolidine and piperidine under both aerobic and anaerobic conditions. The anaerobic degradations were coupled to nitrate reduction. A metabolic pathway for the anaerobic degradation of pyrrolidine was proposed on the basis of enzyme activities implicated in pyrrolidine metabolism from three isolates. The three key pyrrolidine-metabolizing enzymes pyrrolidine dehydrogenase, γ-aminobutyrate/α-ketoglutarate aminotransferase, and succinic semialdehyde dehydrogenase, were induced by heterocyclic amines under denitrifying conditions. They were also induced in cells grown aerobically on heterocyclic amines, suggesting that the anaerobic degradation of pyrrolidine shares the pathway with aerobic degradation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号