首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the genetic and environmental basis of genotype×environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs×environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediate-altitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs. Received: 10 January 1999 / Accepted: 12 March 1999  相似文献   

2.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Theor Appl Genet (1998) 97 : 170–180 Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

3.
 We report results from a breeding strategy designed to accumulate favorable QTL alleles for grain yield identified in the SteptoeבMorex’ (SM) barley germplasm. Two map lines (SM73 and SM145) from the original mapping population were selected based on their marker genotype and QTL structure. When crossed, these lines would be expected to produce progeny with most favorable QTL alleles. One hundred doubled haploid (DH) lines from the F1 hybrid of this cross were genotyped with ten RFLP markers and one morphological marker defining grain yield to monitor QTL segregation. A subset of 24 lines representing various combinations of putatively favorable and unfavorable QTL alleles, together with Steptoe, ‘Morex’, SM73, and SM145, were phenotyped for grain yield in five environments. Multiple regression procedures were used to explore phenotype and genotype relationships. Most target QTLs showed significant effects. However, significance and magnitude of QTL effects and favorable QTL allele phase varied across environments. All target QTLs showed significant QTL-by-environment interaction (QTL×E), and the QTL on chromosome 2 expressed alternative favorable QTL alleles in different environments. Digenic epistatic effects were also detected between some QTL loci. For traits such as grain yield, marker-assisted selection efforts may be better targeted at determining optimum combinations of QTL alleles rather than pyramiding alleles detected in a reference mapping population. Received: 2 June 1998 / Accepted: 17 September 1998  相似文献   

4.
 Advanced backcross QTL (AB-QTL) analysis is a new strategy for studying the effect of unadapted alleles on the agronomic performance of elite cultivated lines. In this paper we report results from the application of the AB-QTL strategy to cultivated tomato using the wild species Lycopersicon hirsutum LA1777 as the donor parent. RFLP genomic fingerprints were determined for 315 BC2 plants and phenotypic data were collected for 19 agronomic traits from approximately 200 derived BC3 lines which were grown in replicated field trials in three locations worldwide. Between 1 and 12 significant QTLs were identified for each of the 19 traits evaluated, with a total of 121 QTLs identified for all traits. For 25 of the QTLs (20%) corresponding to 12 traits (60%), the L. hirsutum allele was associated with an improvement of the trait from a horticultural perspective, despite the fact that L. hirsutum is overall phenotypically inferior to the elite parent. For example, L. hirsutum has fruit that remains green when ripe (lack of red pigment) yet alleles were found in this species that significantly increase red color when transferred into cultivated tomatoes. Wild alleles were also associated with increases in total yield and soluble solids (up to 15%) and brix×red yield (up to 41%). These results support the idea that one cannot predict the genetic potential of exotic germplasm based on phenotype alone and that marker-based methods, such as the AB-QTL strategy, should be applied to fully exploit exotic germplasm. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

5.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

6.
Grain yield and associated agronomic traits are important factors in wheat (Triticum aestivum L.) improvement. Knowledge regarding the number, genomic location, and effect of quantitative trait loci (QTL) would facilitate marker-assisted selection and the development of cultivars with desirable characteristics. Our objectives were to identify QTLs directly and indirectly affecting grain yield expression. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese facultative wheat Ning7840 and the US soft red winter wheat Clark. Phenotypic data were collected for 15 yield and other agronomic traits in the RILs and parental lines from three locations in Oklahoma from 2001 to 2003. Twenty-nine linkage groups, consisting of 363 AFLP and 47 SSR markers, were identified. Using composite interval mapping (CIM) analysis, 10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation (shattering and lodging resistance, heading date, and plant height), and spike morphology traits, respectively. The QTL effects ranged from 7 to 23%. Marker alleles from Clark were associated with a positive effect for the majority of QTLs for yield and yield components, but gene dispersion was the rule rather than the exception for this RIL population. Often, QTLs were detected in proximal positions for different traits. Consistent, co-localized QTLs were identified in linkage groups 1AL, 1B, 4B, 5A, 6A, and 7A, and less consistent but unique QTLs were identified on 2BL, 2BS, 2DL, and 6B. Results of this study provide a benchmark for future efforts on QTL identification for yield traits.  相似文献   

7.
A set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs) was subjected to a QTL study to verify genetic effects for agronomic traits, previously detected in the BC2DH population S42 (von Korff et al. 2006 in Theor Appl Genet 112:1221–1231) and, in addition, to identify new QTLs and favorable wild barley alleles. Each line within the S42IL set contains a single marker-defined chromosomal introgression from wild barley (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is exclusively derived from elite spring barley (H. vulgare ssp. vulgare). Agronomic field data of the S42ILs were collected for seven traits from three different environments during the 2007 growing season. For detection of putative QTLs, a two-factorial mixed model ANOVA and, subsequently, a Dunnett test with the recurrent parent as a control were conducted. The presence of a QTL effect on a wild barley introgression was accepted, if the trait value of a particular S42IL was significantly (P < 0.05) different from the control, either across all environments and/or in a particular environment. A total of 47 QTLs were localized in the S42IL set, among which 39 QTLs were significant across all tested environments. For 19 QTLs (40.4%), the wild barley introgression was associated with a favorable effect on trait performance. Von Korff et al. (2006 in Theor Appl Genet 112:1221–1231) mapped altogether 44 QTLs for six agronomic traits to genomic regions, which are represented by wild barley introgressions of the S42IL set. Here, 18 QTLs (40.9%) revealed a favorable wild barley effect on the trait performance. By means of the S42ILs, 20 out of the 44 QTLs (45.5%) and ten out of the 18 favorable effects (55.6%) were verified. Most QTL effects were confirmed for the traits days until heading and plant height. For the six corresponding traits, a total of 17 new QTLs were identified, where at six QTLs (35.3%) the exotic introgression caused an improved trait performance. In addition, eight QTLs for the newly studied trait grains per ear were detected. Here, no QTL from wild barley exhibited a favorable effect. The introgression line S42IL-107, which carries an introgression on chromosome 2H, 17–42 cM is an example for S42ILs carrying several QTL effects simultaneously. This line exhibited improved performance across all tested environments for the traits days until heading, plant height and thousand grain weight. The line can be directly used to transfer valuable Hsp alleles into modern elite cultivars, and, thus, for breeding of improved varieties.  相似文献   

8.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

9.
Salt tolerance has been analysed in two populations of F7 lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal–Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTL×E interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.  相似文献   

10.
The European corn borer (ECB, Ostrinia nubilalis Hübner) is a major pest of maize in Central Europe. We mapped and characterized quantitative trait loci (QTLs) involved in resistance of maize against ECB damage, compared them with QTLs for agronomic traits, and evaluated the usefulness of marker-assisted selection (MAS) for improving ECB resistance in early maturing European maize germplasm. A total 226 F3 families from the cross D06 (resistant) × D408 (susceptible), together with 93 RFLP and two SSR markers were used for the QTL analyses. For each F3 family we measured the length of tunnels produced by larval stalk mining (TL), stalk damage ratings (SDR), and relative grain yield (RGY) in field experiments, with two replications in two environments in 1 year. The agronomic traits comprised grain yield under insecticide protection (GYP) and manual ECB larval infestation (GYI), the date of anthesis (ANT), and the in vitro digestibility of organic matter (IVDOM) of stover. Estimates of genotypic variance (σ2 g) were highly significant for all traits. Six QTLs for TL and five QTLs for SDR were detected, explaining about 50.0% of σ2 g. Most QTLs showed additive gene action for TL and dominance for SDR. No QTL was found for RGY. The number of QTLs detected for the agronomic traits ranged from two for GYI to 12 for ANT, explaining 12.5 to 57.3% of σ2 g, respectively. Only a single QTL was in common between the two resistance traits, as expected from the moderate trait correlation and the moderate proportions of σ2 g explained. Based on these results, MAS for improving ECB resistance can be competitive when cost-effective PCR-based marker systems are applied. However, it remains to be established whether the putative QTL regions for ECB resistance detected in the population D06 × D408 are consistent across other early maturing European maize germplasms. Received: 20 December 1999 / Accepted: 6 June 2000  相似文献   

11.
Introgression lines (ILs) are useful tools for precise mapping of quantitative trait loci (QTLs) and the evaluation of gene action or interaction in theoretical studies. A set of 159 ILs carrying variant introgressed segments from Chinese common wild rice (Oryza rufipogon Griff.), collected from Dongxiang county, Jiangxi Province, in the background of Indica cultivar (Oryza sativa L.), Guichao 2, was developed using 126 polymorphic simple sequence repeats (SSR) loci. The 159 ILs represented 67.5% of the genome of O. rufipogon. All the ILs have the proportions of the recurrent parent ranging from 92.4 to 99.9%, with an average of 97.4%. The average proportion of the donor genome for the BC4F4 population was about 2.2%. The mean numbers of homozygous and heterozygous donor segments were 2 (ranging 0–8) and 1 (ranging 0–7), respectively, and the majority of these segments had sizes less than 10 cM. QTL analysis was conducted based on evaluation of yield-related traits of the 159 ILs at two sites, in Beijing and Hainan. For 6 out of 17 QTLs identified at two sites corresponding to three traits (panicles per plant, grains per panicle and filled grains per plant, respectively), the QTLs derived from O. rufipogon were usually associated with an improvement of the target trait, although the overall phenotypic characters of O. rufipogon were inferior to that of the recurrent parent. Of the 17 QTLs, 5 specific QTLs strongly associated with more than one trait were observed. Further analysis of the high-yielding and low-yielding ILs revealed that the high-yielding ILs contained relatively less introgressed segments than the low-yielding ILs, and that the yield increase or decrease was mainly due to the number of grain. On the other hand, low-yielding ILs contained more negative QTLs or disharmonious interactions between QTLs which masked trait-enchancing QTLs. These ILs will be useful in identifying the traits of yield, tolerance to low temperature and drought stress, and detecting favorable genes of common wild rice.  相似文献   

12.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

13.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

14.
Evaluation of root traits in rainfed lowland rice is very difficult. Molecular genetic markers could be used as an alternative strategy to phenotypic selection for the improvement of rice root traits. This research was undertaken to map QTLs associated with five root traits using RFLP and AFLP markers. Recombinant inbred lines (RILs) were developed from two indica parents, IR58821–23-B-1–2-1 and IR52561-UBN-1–1-2, that were adapted to rainfed lowland production systems. Using wax-petrolatum layers to simulate a hardpan in the soil, 166 RILs were evaluated for total root number (TRN), penetrated root number (PRN), root penetration index (RPI, the ratio of PRN to TRN), penetrated root thickness (PRT) and penetrated root length (PRL) under greenhouse conditions during the summer and the fall of 1997. A genetic linkage map of 2022 cM length was constructed comprising 303 AFLP and 96 RFLP markers with an average marker space of 5.0 cM. QTL analysis via interval mapping detected 28 QTLs for these five root traits, which were located on chromosomes 1, 2, 3, 4, 6, 7, 10 and 11. Individual QTLs accounted for between 6 and 27% of the phenotypic variation. Most of the favorable alleles were derived from the parent IR58821–23-B-1–2-1, which was phenotypically superior in root traits related to drought resistance. Three out of six QTLs for RPI were detected in both summer and fall experiments and they also were associated with PRN in both experiments. Out of eight QTLs for RPT, five were common in both seasons. Two genomic regions on chromosome 2 were associated with three root traits (PRN, PRT and RPI), whereas three genomic regions on chromosomes 2 and 3 were associated with two root traits (PRT and RPI). Two QTLs affecting RPI and two QTLs affecting PRT were also found in similar genomic regions in other rice populations. The consistent QTLs across genetic backgrounds and the common QTLs detected in both experiments should be good candidates for marker-assisted selection toward the incorporation of root traits in a drought resistance breeding program, especially for rainfed lowland rice. Received: 17 November 1999 / Accepted: 19 March 2000  相似文献   

15.
Modern soybean [(Glycine max (L.) Merrill] breeding programs rely primarily on the use of elite × elite line crosses to develop high-yielding cultivars. Favorable alleles for traits of interest have been found in exotic germplasm but the successful introduction of such alleles has been hampered by the lack of adaptation of the exotic parent to local mega-environment and difficulties in identifying superior progeny from elite × exotic crosses. The objective of this study was to use a population derived from a cross between an adapted and an exotic elite line to understand the genetic causes underlying adaptation to two mega-environments (China and Canada). A cross between a high-yielding Canadian cultivar ‘OAC Millennium’ and an elite Chinese cultivar ‘Heinong 38’ was performed to develop a recombinant inbred line (RIL) population. The RIL population was evaluated in China and Canada in multiple environments from 2004 to 2006. Significant variation for seed yield was observed among the RILs in both the Chinese and Canadian environment. Individual RILs performed differently between the Chinese and Canadian environments suggesting differential adaptation to intercontinental mega-environments. Seven seed yield quantitative trait loci (QTL) were identified of which five were mega-environment universal QTL (linked to markers Satt100, Satt162, Satt277, Sat_126, and the interval of Satt139-Sat_042) and two were mega-environment-specific QTL (at marker intervals, Satt194-SOYGPA and Satt259-Satt576). Seed yield QTL located near Satt277 has been confirmed and new QTL have been identified explaining between 9 and 37% of the phenotypic variation in seed yield. The QTL located near Satt100 explained the greatest amount of variation ranging from 18 to 37% per environment. Broad sense heritability ranged from 89 to 64% among environments. Epistatic effects have been identified in both mega-environments with pairs of markers explaining between 9 and 14% of the phenotypic variation in seed yield. An improved understanding of the type of QTL action as either universal or mega-environment-specific QTL as well as their interaction may facilitate the development of strategies to introgress specific high-yielding alleles from Chinese to North American germplasm and vice versa to sustain efforts in breeding of high-yielding soybean cultivars.  相似文献   

16.
Genome wide quantitative trait loci (QTL) mapping was conducted in Arabidopsis thaliana using F2 mapping population (Col-0 × Don-0) and SNPs markers. A total of five linkage groups were obtained with number of SNPs varying from 45 to 59 per linkage group. The composite interval mapping detected a total of 36 QTLs for 15 traits and the number of QTLs ranged from one (root length, root dry biomass, cauline leaf width, number of internodes and internode distance) to seven (for bolting days). The range of phenotypic variance explained (PVE) and logarithm of the odds ratio of these 36 QTLs was found be 0.19–38.17% and 3.0–6.26 respectively. Further, the epistatic interaction detected one main effect QTL and four epistatic QTLs. Five major QTLs viz. Qbd.nbri.4.3, Qfd.nbri.4.2, Qrdm.nbri.5.1, Qncl.nbri.2.2, Qtd.nbri.4.1 with PVE > 15.0% might be useful for fine mapping to identify genes associated with respective traits, and also for development of specialized population through marker assisted selection. The identification of additive and dominant effect QTLs and desirable alleles of each of above mentioned traits would also be important for future research.  相似文献   

17.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

18.
Typical linkage and quantitative trait locus (QTL) analyses in forest trees have been conducted in single pedigrees with sex-averaged linkage maps. The results of a QTL analysis for wood quality and growth traits of coastal Douglas-fir using eight full-sib families, each consisting of 40 progeny, replicated on four sites are presented. The resulting map of segregating genetic markers consisted of 120 amplified fragment length polymorphism (AFLP) loci distributed across 19 linkage groups. The wood quality traits represent the widest suite of traits yet examined for QTL analysis in a tree species in a single study. Wood fiber traits showed the lowest number of QTLs (3) with relatively small effect (ca. 4%); wood density traits also showed just three QTLs but with slightly larger effect; wood chemistry traits showed more QTLs (7), while ring density traits showed many QTLs with large numbers of QTLs (78) and interesting patterns of temporal variation. Growth traits gave just five QTLs but of major effect (10–16%). Trees, with their long generation times, provide a rich resource for studies of temporal variation of QTL expression.  相似文献   

19.
Milling yield, or the grain weight from which 100 kg of rolled groats is obtained upon milling, is an important quality characteristic of cultivated oat (Avena sativa L.). Kernel morphology and the groat (caryopsis) percentage of the whole kernel including hull are factors that influence milling yield. We mapped QTLs for kernel area, kernel length, kernel width, and groat percentage in two populations of 137 recombinant inbred lines by RFLP and AFLP analysis to evaluate the prospects of marker-assisted selection (MAS). Phenotypic correlations between kernel morphology traits and groat percentage were not significant. For kernel morphology traits and groat percentage, one to five QTLs were detected, explaining 7.0–60.7% of the total phenotypic variance depending on the trait. One QTL for kernel length in each population and one QTL for kernel width in one population were found at the same location as a QTL for groat percentage, indicating that a change in kernel size or shape could have an influence on groat percentage. The positions and effects of QTLs for kernel morphology and groat percentage were compared to QTLs detected previously for chemical grain composition (oil andβ-glucanconcentration) and agronomic traits to evaluate the selection response on these traits through MAS. Several regions of the oat genome were identified that contained clusters of QTLs influencing two or more traits. While the allele from one parent at a QTL could simultaneously improve two or more traits in one population, it could have opposite effects on the same traits at another QTL or in the other population. Associations among traits were complex and will require careful consideration when employing QTL-marker associations in MAS to avoid negative selection response. Future research to discover candidate genes for those QTL clusters could provide information about trait associations and help in designing selection programs. Received: 17 February 2000 / Accepted: 27 October 2000  相似文献   

20.
An F4:5 population of 490 recombinant inbred lines (RILs) from the cross Apo/2*Swarna was used to detect quantitative trait loci (QTL) with large effects on grain yield under drought stress using bulk-segregant analysis (BSA). Swarna is an important rainfed lowland rice variety grown on millions of hectares in Asia, but is highly susceptible to drought and aerobic soil conditions. Apo is an aerobic-adapted variety with moderate tolerance to drought. Two rice microsatellite (RM) markers, RM324, and RM416, located on chromosomes 2 and 3, respectively, were shown via BSA to be strongly associated with yield under lowland drought stress. The effects of these QTL were tested in a total of eight hydrological environments over a period of 3 years. The QTL linked to RM416 (DTY 3.1 ) had a large effect on grain yield under severe lowland drought stress, explaining about 31% of genetic variance for the trait (P < 0.0001). It also explained considerable variance for yield under mild stress in lowland conditions and aerobic environments. To our knowledge this is the first reported QTL that has a large effect on yield in both lowland drought and aerobic environments. The QTL linked to RM324 (DTY 2.1 ) had a highly significant effect on grain yield in lowland drought stress (R 2 = 13–16%) and in two aerobic trials. The effect of these QTL on grain yield was verified to be not mainly due to phenology differences. Effects of DTY 3.1 on yield under stress have been observed in several other rice mapping populations studied at IRRI. Results of this study indicate that BSA is an effective method of identifying QTL alleles with large effects on rice yield under severe drought stress. The Apo alleles for these large-effect QTL for grain yield under drought and aerobic conditions may be immediately exploited in marker-assisted-breeding to improve the drought tolerance of Swarna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号