首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的:探索微堆发酵法制造的普洱茶对人肺NCI-H1299细胞的影响,为肺癌的预防及辅助治疗提供科学依据。方法:采用微堆发酵法生产普洱茶,并将其提取液作用于人肺NCI-H1299细胞,采用WST-1 细胞增殖及细胞毒性检测试剂盒检测H1299细胞的增殖情况、采用细胞划痕愈合法检测H1299细胞的迁移情况、采用Transwell细胞体外侵袭实验法检测H1299细胞的侵袭能力。结果:微堆发酵法生产出的普洱茶符合国家标准;该普洱茶提取液能有效抑制NCI-H1299细胞的增殖(P<0.01)、迁移(P<0.01)与侵袭(P<0.05),且呈浓度依赖性。结论:微堆发酵法生产的普洱茶能够抑制人非小细胞肺癌H1299的增殖、迁移和侵袭。  相似文献   

2.
目的:探讨液泡分选蛋白4B(VPS4B)对骨关节炎软骨细胞凋亡的调控作用。方法:通过内侧半月板部分切除加前交叉韧带切断的方法建立骨关节炎SD大鼠模型,通过RT-PCR和免疫组化检测VPS4B在大鼠关节软骨中的表达。番红O/固绿染色方法检测大鼠膝关节软骨组织形态变化。通过用10 ng/mL的IL-1β诱导人软骨肉瘤细胞SW1353 24 h来模拟骨关节炎样软骨细胞损伤,Western blot检测SW1353细胞中VPS4B、凋亡相关因子(cleaved caspase-3和cleaved PARP)和磷酸化p38的表达。转染si-RNA敲低SW1353细胞中VPS4B表达,并评估其对IL-1β诱导的SW1353细胞凋亡标记和p38 MAPK信号通路的影响。膜联蛋白V (Annexin V)和碘化丙啶(PI)染色用于检测软骨细胞凋亡。结果:VPS4B在模型组大鼠的关节软骨中明显上调(P0.05)。IL-1β诱导24 h后,SW1353细胞中的VPS4B、cleaved caspase-3、cleaved PARP和p-p38蛋白表达水平均明显增加。而转染VPS4B-si RNA敲低VPS4B的表达后,cleaved caspase-3、cleaved PARP和p-p38蛋白表达水平均被抑制,并且抑制了IL-1β诱导细胞的凋亡率。结论:VPS4B在骨关节炎发病过程中明显上调,VPS4B的上调通过激活p38 MAPK信号通路来促进软骨细胞凋亡。  相似文献   

3.
目的探讨瘦素(leptin)对血管平滑肌细胞(VSMCs)核转录因子(NF-κB)的影响。方法贴块法原代培养VSMCs;分别采用MTT法检测leptin对VSMCs增殖活性的影响,免疫荧光-共聚焦显微镜和蛋白印迹技术检测Lep-tin对VSMCs中NF?κB的细胞内定位和VSMCs核中NF?κB的蛋白含量。结果leptin对VSMCs具有促进细胞增殖的作用,这种促增殖活性具有剂量依赖性;Leptin能促进VSMCs中的NF?κB从胞质转移至细胞核,并且这种作用也具有剂量依赖性。结论Leptin能促进VSMCs增殖,能激活VSMCs中NF?κB,使其从胞质转位至胞核;同时,目前已有的研究已经证明NF?κB与平滑肌细胞的增殖和迁移关系密切,提示Leptin促进VSMCs的增殖作用中可能有NF?κB信号传导通路的参与。  相似文献   

4.
摘要 目的:探讨糖尿病诱导serpinE1分泌增多是否引起心肌细胞NF-κB核易位及凋亡。方法:8周龄C57BL/6J小鼠随机分为对照组和糖尿病组,糖尿病模型应用链脲佐菌素腹腔注射诱导。体外试验中,应用低糖(5.5 mmol/L)及高糖(25 mmol/L)浓度培养基分别处理大鼠心肌H9C2细胞。ELISA法分别检测小鼠血清及细胞培养上清中的serpinE1水平,Western Blot分别检测心脏组织及细胞中 caspase-3、cleaved caspase-3以及细胞浆、细胞核中NF-κB蛋白表达。此外,H9C2细胞分为三组:对照组、serpinE1重组蛋白处理组、JSH-23与serpinE1重组蛋白共同处理组,Western Blot检测上述相同指标。结果:糖尿病小鼠血清及高糖处理的细胞培养上清中serpinE1水平较对照组显著增加(P<0.05)。同对照组相比,细胞核/细胞浆NF-κB、cleaved caspase-3/ caspase-3在糖尿病小鼠心肌组织及H9C2细胞高糖处理组中显著上升(P<0.05)。此外,serpinE1重组蛋白处理后细胞核/细胞浆NF-κB以及cleaved caspase-3/ caspase-3同对照组相比,均显著增加(P<0.05),而JSH-23则减弱了serpinE1的这些效应。结论:糖尿病诱导serpinE1分泌增多促进心肌细胞NF-κB核易位及凋亡。  相似文献   

5.
目的:观察汉黄芩素对人骨肉瘤细胞系143B增殖和凋亡的影响,并探讨其可能的作用机制。方法:采用体外培养人成骨肉瘤细胞系143B,CCK-8实验检测不同浓度汉黄芩素对骨肉瘤143B细胞增殖抑制作用;流式细胞术分析汉黄芩素对癌细胞周期分布及凋亡的影响;Western Blot检测凋亡相关蛋白Bax、Bcl-2、cleaved caspase-9和cleaved caspase-3的表达水平。结果:CCK-8结果显示汉黄芩素以时间、浓度依耐性的方式抑制骨肉瘤143B细胞的增殖;流式细胞术结果表明汉黄芩素可导致骨肉瘤细胞周期阻滞于G0/G1期并以浓度依赖的方式诱导骨肉瘤细胞凋亡;Western Blot检测结果证明,汉黄芩素可上调骨肉瘤细胞中促凋亡蛋白Bax、cleaved caspase-9、cleaved caspase-3的表达,而下调抑制凋亡蛋白Bcl-2。结论:汉黄芩素抑制骨肉瘤细胞增殖、导致细胞周期阻滞,促进其凋亡,并呈现时间和浓度依赖性,汉黄芩素激活Caspase凋亡途径及诱导细胞周期阻滞可能是其抗骨肉瘤的作用机制。  相似文献   

6.
活性氧对NF-κB活性及JNK信号通路的调节   总被引:1,自引:0,他引:1  
活性氧(ROS)是生物体有氧代谢过程中产生的一类活性含氧化合物的总称,机体细胞可通过多种途径维持ROS产生与降解的动态平衡。研究表明,活性氧可作为第二信使调节与细胞增殖、分化、凋亡相关的信号转导通路。c-JunN端激酶(JNK)通路可以介导氧化应激、细胞因子、紫外照射等引起的细胞凋亡。另外,κ基因结合核因子(NF-κB)是氧化应激调节的靶因子之一,同样也能诱导促进细胞内的氧化应激反应,还可通过活性氧蓄积抑制JNK的激活。简要综述活性氧对NF-κB和JNK信号通路的调节。  相似文献   

7.
研究白眉蝮蛇去整合素adinbitor对蛋白激酶B(Akt)通路信号分子的影响及对SSMC7721细胞增殖、迁移及凋亡的影响.采用MTT法检测adinbitor对SSMC7721细胞增殖的作用;Hoechst33258试剂盒检测adinbitor对SSMC7721凋亡的影响; Transwell 检测adinbitor对SSMC7721细胞迁移的作用;Western印迹检测adinbitor对信号分子Akt及磷酸化蛋白激酶B(p-Akt)、核因子κB(NF-κB)的抑制蛋白IκB-α及NF-κBp65的影响;分光光度法检测其对半胱天冬蛋白酶-3 (caspase -3)活性的影响.结果显示,adinbitor可显著抑制SSMC7721细胞的迁移和增殖(与对照组比较,P<005),促进凋亡. 在浓度梯度adinbitor作用下,Akt 表达量基本不变,但其磷酸化受到抑制.细胞浆内IκB α表达增加,细胞核内NF-κBp65表达减少,caspase-3活化倍数平均在2.24~3.85之间,以上作用均呈现剂量依赖性.结果说明,adinbitor可通过抑制Akt相关信号转导分子的作用而抑制SSMC7721细胞增殖和迁移,并促进其凋亡.  相似文献   

8.
目的:初步探讨高糖诱导肾小球系膜细胞表达肿瘤坏死因子α(TNFα-)的机制。方法:分别用p38丝裂原活化蛋白激酶(p38MAPK)特异性抑制剂SB203580、核因子-κB(NFκ-B)特异性抑制剂PDTC预刺激肾小球系膜细胞30 min,再以高糖(20 mmol/L)干预48 h后,分别采用RT-PCR法检测系膜细胞内TNFα-mRNA水平,Western blot法检测系膜细胞内磷酸化p38MAPK蛋白水平、细胞核及细胞浆NFκ-B p65蛋白水平。结果:与低糖对照组相比,高糖可促进肾小球系膜细胞内TNFα-mRNA表达,以及p38MAPK、NFκ-B蛋白活化;SB203580(10 mmol/L)、PDTC(10 mmol/L)预刺激肾小球系膜细胞均可抑制高糖诱导肾小球系膜细胞表达TNFα-,且SB203580可抑制高糖诱导系膜细胞内NFκ-B蛋白活化。结论:p38MAPK-NFκ-B信号途径参与介导高糖诱导肾小球系膜细胞表达TNFα-。  相似文献   

9.
本文以B淋巴瘤Ramos细胞为研究对象,探讨α-倒捻子素(α-mangostin,α-Ma)对B淋巴瘤的增殖抑制作用并初步阐释其分子机制。首先通过CCK-8法探究α-Ma对Ramos细胞的增殖抑制作用;再利用倒置显微镜成像法观察α-Ma对Ramos细胞形态的影响;随后利用DCFH-DA、JC-1、Annexin V-FITC/PI荧光染色和流式细胞术检测α-Ma对Ramos细胞活性氧水平、线粒体膜电位、凋亡的影响;并通过蛋白免疫印迹技术测定α-Ma作用Ramos后细胞凋亡相关蛋白及信号通路蛋白的表达情况。CCK-8分析结果显示,α-Ma以药物浓度依赖和时间依赖的方式抑制Ramos细胞增殖,其24 h和48 h的IC值分别为14.84μmol/L和8.087μmol/L;倒置显微镜成像法发现α-Ma能减少Ramos细胞数量并诱导细胞形态发生凋亡样改变;流式细胞术检测发现,α-Ma能增加Ramos细胞内活性氧水平、降低细胞线粒体膜电位,同时诱导细胞凋亡;蛋白免疫印迹结果显示,α-Ma下调caspase-3/9的表达,上调cleaved caspase-3/9、cleaved PARP、Bax、Bim和p-p38 MAPK的表达。综上所述,α-Ma对B淋巴瘤Ramos细胞具有增殖抑制作用,其可能机制是α-Ma活化ROS/p38 MAPK/Bax级联反应诱导B淋巴瘤细胞凋亡。  相似文献   

10.
本研究旨在探讨在H2O2诱导氧化应激损伤条件下,雷公藤红素对肌萎缩性侧索硬化症细胞模型SOD1G93ANSC34的保护作用及其相关分子机制。用不同剂量H2O2、雷公藤红素处理表达人突变SOD1G93A基因的NSC34细胞24h后,CCK-8试剂检测细胞存活率;丙二醛试剂盒检测细胞内丙二醛水平;real-time PCR检测细胞谷氨酸半胱氨酸连接酶催化亚基(glutamate-cysteine ligase catalytic subunit, GCLC)和谷胱甘肽硫转移酶(glutathione S-transferases, GST)的表达水平;Western blot检测药物处理后细胞内MEK/ERK和PI3K/Akt细胞信号通路的激活。结果显示,50 nmol/L雷公藤红素预处理可提高H2O2 (10 μmol/L)损伤后SOD1G93ANSC34细胞的生存率,并使细胞内MDA生成减少,逆转H2O2诱导的SOD1G93ANSC34细胞内谷胱甘肽合成相关酶GCLC和GST mRNA表达下调。雷公藤红素处理0.5 h、1 h分别激活SOD1G93ANSC34细胞内MEK/ERK和PI3K/Akt信号通路达峰值,且MEK抑制剂PD98059和Akt抑制剂MK2206可阻断雷公藤红素对相关信号通路的激活效应。PD98059、MK2206预处理30 min均抑制雷公藤红素引起的SOD1G93ANSC34细胞内GCLC和GST上调。以上研究结果提示,雷公藤红素对肌萎缩性侧索硬化症细胞模型SOD1G93ANSC34细胞有抗氧化应激的保护作用,该神经保护作用与雷公藤红素调节SOD1G93ANSC34细胞内谷胱甘肽合成相关酶类生成有关,细胞内MEK/ERK和PI3K/Akt信号通路参与此调节过程。  相似文献   

11.
Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB) was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX), a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.  相似文献   

12.
Celastrol has been reported to possess anticancer effects in various cancers; however, the precise mechanism underlying ROS-mediated mitochondria-dependent apoptotic cell death triggered by celastrol treatment in melanoma cells remains unknown. We showed that celastrol effectively induced apoptotic cell death and inhibited tumor growth using tissue culture and in vivo models of B16 melanoma. In addition to apoptotic cell death in B16 cells, several apoptotic events such as PARP cleavage and activation of caspase were confirmed. Pretreatment with caspase inhibitor modestly attenuated the celastrol-induced increase in PARP cleavage and sub-G1 cell population, implying that caspases play a partial role in celastrol-induced apoptosis. Moreover, ROS generation was detected following celastrol treatment. Blocking of ROS accumulation with ROS scavengers resulted in inhibition of celastrol-induced Bcl-2 family-mediated apoptosis, indicating that celastrol-induced apoptosis involves ROS generation as well as an increase in the Bax/Bcl-2 ratio leading to release of cytochrome c and AIF. Importantly, silencing of AIF by transfection of siAIF into cells remarkably attenuated celastrol-induced apoptotic cell death. Moreover, celastrol inhibited the activation of PI3K/AKT/mTOR signaling cascade in B16 cells. Our data reveal that celastrol inhibits growth and induces apoptosis in melanoma cells via the activation of ROS-mediated caspase-dependent and -independent pathways and the suppression of PI3K/AKT signaling.  相似文献   

13.
Bian T  Gibbs JD  Örvell C  Imani F 《PloS one》2012,7(5):e38052
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.  相似文献   

14.
Dai Y  Desano J  Tang W  Meng X  Meng Y  Burstein E  Lawrence TS  Xu L 《PloS one》2010,5(12):e14153

Background

Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC) with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.

Methodology/Principal Findings

We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1), with IC50 in the range of 1–2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.

Conclusions/Significance

Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be developed as a new therapeutic agent for hormone-refractory prostate cancer.  相似文献   

15.
Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis. [BMB Reports 2014; 47(12): 697-702]  相似文献   

16.

Objectives

To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells.

Materials and Methods

A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.

Results

After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.

Conclusions

125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.  相似文献   

17.
18.
《Translational oncology》2020,13(2):135-145
Histone deacetylase 6 (HDAC6) regulates cytoplasmic signaling networks through deacetylation of various cytoplasmic substrates and serves as a key member of the ubiquitin proteasome system (UPS). This study is focused on HDAC6 regulation of the Notch1 receptor that plays a crucial role in tumor growth in NSCLC. A series of cell culture experiments were employed using A549, Lewis lung carcinoma 2 (LL2), and H1299 NSCLC cell lines to investigate HDAC6-mediated regulation of the Notch1 receptor through the UPS. HDAC6 was inhibited with small molecule inhibitors tubacin and ACY1215 in vitro and in vivo. Inhibition of HDAC6 led to reduced levels of Notch1 receptor in a dose-dependent manner in all three NSCLC cell lines tested. HDAC6 inhibition with ACY1215 led to G2 arrest, increased apoptosis, and increased levels of cleaved PARP1 in A549, LL2, and H1299 cell lines. In vivo inhibition of HDAC6 with ACY1215 significantly reduced LL2 tumor growth rate. Our data show that HDAC6 in NSCLC cells supports Notch1 signaling and promotes cell survival and proliferation. Our results support clinical investigation of HDAC6 inhibitors as a potential therapeutic option for treatment of NSCLC patients.  相似文献   

19.
Celastrol, a pentacyclic tritepene extracted from Tripterygium Wilfordi plant, showing potent liver protection effects on several liver‐related diseases. However, the anti‐inflammatory potential of celastrol in liver fibrosis and the detailed mechanisms remain uncovered. This study was to investigate the anti‐inflammatory effect of celastrol in liver fibrosis and to further reveal mechanisms of celastrol‐induced anti‐inflammatory effects with a focus on AMPK‐SIRT3 signalling. Celastrol showed potent ameliorative effects on liver fibrosis both in activated hepatic stellate cells (HSCs) and in fibrotic liver. Celastrol remarkably suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Interestingly, celastrol increased SIRT3 promoter activity and SIRT3 expression both in fibrotic liver and in activated HSCs. Furthermore, SIRT3 silencing evidently ameliorated the anti‐inflammatory potential of celastrol. Besides, we found that celastrol could increase the AMPK phosphorylation. Further investigation showed that SIRT3 siRNA decreased SIRT3 expression but had no obvious effect on phosphorylation of AMPK. In addition, inhibition of AMPK by employing compound C (an AMPK inhibitor) or AMPK1α siRNA significantly suppressed SIRT3 expression, suggesting that AMPK was an up‐stream protein of SIRT3 in liver fibrosis. We further found that depletion of AMPK significantly attenuated the inhibitory effect of celastrol on inflammation. Collectively, celastrol attenuated liver fibrosis mainly through inhibition of inflammation by activating AMPK‐SIRT3 signalling, which makes celastrol be a potential candidate compound in treating or protecting against liver fibrosis.  相似文献   

20.
Celastrol, a quinone methide triterpenoid derived from the medicinal plant Tripterygium wilfordii, possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we examined the suppressive effect of celastrol on IFN-γ-induced expression of ICAM-1 and the molecular mechanism responsible for these activities. We found that celastrol induced mRNA and protein expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. Treatment of HaCaT cells with tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, reversed the suppressive effect of celastrol on IFN-γ-induced protein and mRNA expression of ICAM-1. HO-1 knockdown using small interfering RNA (siRNA) led to reverse inhibition of IFN-γ-induced up-regulation of ICAM-1 by celastrol. In addition, SnPP reversed suppression of IFN-γ-induced promoter activity of ICAM-1 by celastrol. Furthermore, blockage of HO-1 activity by SnPP and HO-1 siRNA reversed the inhibitory effect of celastrol on IFN-γ-induced adhesion of monocytes to keratinocytes. These results suggest that celastrol may exert anti-inflammatory responses by suppressing IFN-γ-induced expression of ICAM-1 and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号