首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
三疣梭子蟹胚胎发育过程中卵内幼体形态   总被引:4,自引:0,他引:4  
薛俊增  堵南山  赖伟 《动物学报》2001,47(4):447-452
三疣梭子蟹胚台发育过程中,卵内幼体共经历2期卵内无节幼体和3期卵内tao状幼体,各幼体期的主要特征表现为:第1期卵内无节幼体具小触角,大触角和大颚3对附肢,第2期卵内无节幼体除草1期的3对附肢外,2对小颚开始出现,腹部前端分节,第1期卵内tao状幼体阶段复眼先为棒状,继而变成月牙状,附肢5对,腹部分为6节,第2期卵内tao状幼体阶段2对颚足出现,复眼发育完全,卵黄蝶状,心脏开始跳动,到此阶段末期,附肢分节和分叉,第3期卵内tao状幼体阶段,各器官进一步发育,肌肉明显。  相似文献   

2.
三疣梭子蟹胚胎发育过程中消化系统的发生和发育   总被引:4,自引:2,他引:2  
薛俊增  堵南山  赖伟 《动物学研究》2001,22(5):T001-T002
对三疣梭子蟹(Portunus trituberculatus)不同发育阶段的胚胎进行连续组织切片,以揭示其消化系统的发生和发育。结果显示前肠,中肠和后肠皆发生于原肠胚期,前肠在第1期卵内蚤状幼体阶段发育成胃与食道,胃开口于卵黄囊,后肠肠上皮细胞在第1,2期卵内无节幼体阶段尚未形成有序排列,至第1期卵内蚤状幼体时始形成后肠腔,到第2期卵蚤状幼体时与中有肠连接,中肠在第2期卵内蚤状幼体阶段发育成杯状结构,孵化前与前肠贯通,形成完整的消化系统。  相似文献   

3.
通过对三疣梭子蟹胚胎进行连续采样和组织切片,系统研究了三疣梭子蟹胚胎发育过程中卵黄囊和肝胰腺的发生与卵黄物质利用的关系。结果表明:(1)三疣梭子蟹胚胎的卵黄岛和卵黄囊结构分别出现在原肠期和无节幼体期,胚胎从原肠期至卵内第一期溞状幼体期,始终存在卵黄岛结构,且卵黄岛中的卵黄物质不断被分解和利用. (2)卵内第二期溞状幼体后,卵黄囊分为两个区域,卵黄囊壁中出现肝胰腺细胞(柱状上皮细胞),此时肝胰腺前体已开始形成,卵黄岛开始融合. (3)卵内第三期溞状幼体阶段,卵黄囊发育成一双肝胰腺,由于肝胰腺中的卵黄物质互相融合,卵黄岛结构消失。此阶段胚胎对卵黄物质的利用加快, 卵黄物质中存在许多空泡状结构;(4)胚胎发育进入孵化前期后,肝胰腺腔内的卵黄物质极少,而初孵溞状幼体肝胰腺腔内卵黄物质已完全消失,肝胰腺为一对囊状结构。这些结果表明在三疣梭子蟹胚胎发育从原肠期到孵化前的过程中,卵黄岛和肝胰腺细胞对于卵黄物质分解和利用起着十分重要的作用。  相似文献   

4.
三疣梭子蟹胚胎发育过程中生殖腺的形态   总被引:1,自引:1,他引:0  
对三疣梭子蟹胚胎切片做显微观察,至第二期卵内涵状幼体阶段才见形态结构明显的生殖腺。其外观囊状,内部具空腔,细胞排列成管状,开口于胚胎表面。左右两个生殖腺以管状结构相连。  相似文献   

5.
在水温25~26℃、盐度30和pH 7.8~8.4条件下,观察远海梭子蟹胚胎发育全过程,其结果发现,远海梭子蟹胚胎发育经历卵裂、囊胚、原肠胚、无节幼体、后无节幼体和原溞状幼体等六个阶段.远海梭子蟹卵排出约28h开始表面卵裂,约40h,形成囊胚,约60h,预定内胚层细胞出现,并与集中在其周围的细胞一起内陷,形成原肠胚.约90h,3对附肢的无节幼体出现,约110h,5对附肢的后无节幼体出现,约140h,7对附肢的原溞状幼体出现.复眼、心跳、色素形成均在原潘状幼体阶段完成.原溞状幼体孵出时(约300h),颚足长出羽状刚毛,变为溞状幼体.整个胚胎发育过程约300h.  相似文献   

6.
1.从非洲鲫鱼的鱼体上和对成熟卵囊的短期培养,获得了东方鱼虱的幼虫和成虫的各期标本,共发现无节幼体二期,桡足幼体一期,附着幼体五期,以后即为成虫期。 2.第一无节幼体有三对附肢和一对尾叉,三对附肢除第一对为单肢型外,其余均为双肢型。后期无节幼体身体增长,体内已孕育着下一期幼体的分节和一些附肢。 3.桡足幼体这期出现了变态,身体分节,可分头胸、胸、腹三部分,呈剑水蚤型。头胸部有下列几对附肢:第一触角、第二触角、大颚、第一小颚、第二小颚、第一颚足、第二颚足和第一对游泳足。胸部有三个自由胸节,前二节各着生一对附肢,即第二、三对游泳足。第一、二对游泳足为双肢型,第三对游泳足为一突起具1长1短二根刚毛。额丝盘曲在头胸部腹面前部。腹部一节,尾叉一对,尾刚毛5根。 4.附着幼体期,是虫体放出额丝营吸附生活的时期。头胸甲逐渐扩大,胸部的第一自由胸节,逐渐与头胸甲愈合,第二自由胸节逐渐缩小,第三自由胸节逐渐膨大成为生殖节。第四期附着幼体,即出现了雌雄性的区别。雄性的生殖器官要比雌性的成熟得早,第五期 附着幼体,雄性已成熟,而雌性尚未完全成熟,交配是在第五期附着幼体蜕皮后,这时的雌雄性,均可营寄生生活或作短期自由游泳。雌雄两性的主要区别,在第二触角、第二小颚、第二颚足、生  相似文献   

7.
李娜  李华  那杰 《昆虫知识》2008,45(2):327-329
蟋蟀脑由前脑、中脑和后脑三部分组成。前脑由1对蕈形体、中央复合体和视叶构成;每个蕈形体由2个冠、柄及与柄相连的α叶和β叶组成,是信息联络整合部位;中央复合体由中央体和脑桥组成,主要参与感觉信息的加工过程;视叶由神经节层、外髓和内髓组成,是视觉系统的中心。中脑由主要组成成分为嗅觉纤维球的嗅叶组成,是嗅觉系统的中心。后脑向后与食道下神经节相连。  相似文献   

8.
【目的】解剖棉铃虫Helicoverpa armigera (Hübner) 5龄幼虫脑和咽下神经节及其内部神经髓形态结构,并分析和构建幼虫脑和咽下神经节以及各神经髓的三维结构模型。【方法】采用免疫组织化学方法解剖脑和咽下神经节的内部神经髓结构,利用激光共聚焦显微镜获取脑和咽下神经节扫描图像,然后利用AMIRA 三维图像分析软件进行图像分析,从而构建脑和咽下神经节的三维结构模型,并测量脑和咽下神经节以及内部各神经髓的体积,并分析了相对比例。【结果】 棉铃虫5龄幼虫脑和咽下神经节由围咽神经索连接在一起。脑主要由前脑、中脑和后脑3部分组成。前脑内包括视叶、蕈形体和中央体等形态结构较明显的神经髓。此外,前脑还包括其他位于脑的左右两侧以及背侧和腹侧大量神经髓区域,约占脑总神经髓的59.65%。这些神经髓区域边界不明显。中脑主要包括1对触角叶;后脑位于脑的腹侧和触角叶的下方,体积较小。咽下神经节由3个神经节融合构成,从前到后分别为上颚神经节、下颚神经节和下唇神经节,由于融合的紧密程度高,3个神经节间的边界不明显。【结论】阐明了棉铃虫5龄幼虫脑和咽下神经节的神经髓形态结构,构建了脑和咽下神经节以及内部神经髓的三维结构模型。三维模型可以任意旋转,能从任何角度观察脑、咽下神经节和内部不同神经髓的结构及其它们之间的空间关系。本研究结果对研究棉铃虫脑和咽下神经节信息接收、处理及调控行为的机制奠定了解剖学基础。  相似文献   

9.
三疣梭子蟹胚胎发育早期的组织学研究   总被引:11,自引:4,他引:7  
对三疣梭子蟹(Portunus trituberculatus)胚胎发育早期(卵裂至原肠胚期)进行了组织学观察。结果发现:卵排至体外约52h后开始卵裂,卵裂方式为表面卵裂,卵裂至256细胞时,胚胎发育进行了囊胚期。囊胚为实囊胚,囊胚后期,16个排成例嗽叭形的预定内胚层细胞与聚在其附近的其他细胞一起内陷形成原肠。预定内胚层细胞脱离原肠后,进行1次切向分裂,形成卵黄细胞和内胚层细胞,与此同时,胚工细胞不断分裂,产生视叶原基和胸腹原基,不久,2个胞腹原基逐渐愈合形成胸腹突。随胚胎发育,在似桥细胞带上出现大颚原基、大触角原基,随后大大触角原基与视叶原基之间的腹中线上发生口凹,在小触角原基产生后,胚肥发育进入卵内无节幼体期。  相似文献   

10.
【目的】阐述绿盲蝽Apolygus lucorum中枢神经系统的组成,辨识各组成部分的神经节解剖结构及其形态,计算中枢神经系统各神经节结构体积大小、解析其空间分布关系以及连接模式。【方法】采用免疫组织化学方法,使用突触蛋白抗体对绿盲蝽中枢神经系统神经髓进行染色标记,利用共聚焦激光扫描显微镜获取中枢神经系统各结构数码图像,使用三维图像分析软件对绿盲蝽中枢神经系统进行分析,并构建三维模型。【结果】绿盲蝽中枢神经系统从前往后分别由脑神经节、咽下神经节、前胸神经节和后部神经节组成。脑、咽下神经节和前胸神经节3个神经节融合在一块,形成脑-咽下神经节-前胸神经节复合体,并通过长的神经连索与后部神经节相连,从外观上看似由2个大的神经节构成,这种神经节愈合形式尚未在昆虫中发现过。前胸神经节与后部神经节分离,二者由长的神经连索连接起来。除前胸神经节由单独的神经原节构成外,其他3个神经节又由多个神经原节融合而成。脑包括前脑、中脑和后脑3部分。咽下神经节包括上颚神经节、下颚神经节和下唇神经节。后部神经节包括中胸、后胸和腹部神经节3部分。【结论】明确了绿盲蝽中枢神经系统的神经节构成,发现了绿盲蝽中枢神经系统各神经节的高度融合特性。该项研究结果为研究绿盲蝽中枢神经系统的发育、重塑和系统演化奠定了形态学基础,为研究中枢神经元形态、分布以及其对昆虫生理和行为的功能调控机制提供了结构框架。  相似文献   

11.
12.
K. Hausmann 《Protoplasma》1979,100(2):199-213
Summary The membranes of the pellicle of the ciliatePseudomicrothorax dubius are investigated using thin section electron microscopy and freeze-fracture replicas. The plasma membrane is covered by a surface coat and is connected to the outer alveolar membrane by short, sometimes branched, bridges. The inner alveolar membrane is coated on both sides. The epiplasm lies in intimate contact with the cytoplasmic surface of this membrane, and there is a corresponding deposit on the other surface. This deposit is regularly striated.The epiplasmic layer and the alveoli are interrupted at sites of cytotic activity,e.g., the attachment sites of trichocysts, the cytoproct, and the parasomal sacs. The striated deposit ends where the epiplasm ends, indicating a direct relationship between these two epimembranous layers.There is a deposit along the sides of the first part of the tip of the trichocysts, and in this region the trichocyst membrane is free of intramembranous particles.The membrane of the parasomal sacs has a coat on both surfaces. That on the extraplasmic surface is similar to the surface coat of the plasma membrane. The origin of the cytoplasmic coat is unknown. The cytotic activity of these sacs is indicated by their highly irregular profiles.  相似文献   

13.
Summary The differentiation of the spermatid, especially in reference to the formation of the flagellum, and transformation of the shape of the nucleus was investigated in the domestic fowl.In the early stage of the spermatid, a prominent Golgi apparatus appears around the centrioles. The Golgi vesicles then surround the axial-filament complex which develops from the distal centriole. These vesicles fuse to form continuous membrane at the earliest stage of flagellar formation, and in the succeeding stage Golgi lamellae are attached to the plasma membrane of the developing flagellum. From these observations, it is assumed that Golgi apparatus may be a source of the membrane system of the flagellum.The microtubules distributed around the nucleus form the circular manchette. The anterior region of the nucleus with the manchette is cylindrical in shape and the posterior region without it remains irregular in shape. When the circular manchette has been completed, the whole nucleus acquires a slender cylindrical shape. The circular manchette then changes into the longitudinal manchette. The nuclei of spermatids without a longitudinal manchette are abnormal in shape. In view of these observations it is assumed that the nuclear shaping of the spermatid may be accomplished by circular manchette and the maintenance of shape of the elongated nucleus by longitudinal manchette.The authors wish to thank Mr. Takayuki Mori for his helpful suggestions and technical advices  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号