首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
生物膜电压门控离子通道的结构和功能性构象   总被引:1,自引:0,他引:1  
生物膜离子通道具有多种重要的生理功能.近年,已分离、纯化了电压门控的Na~+、Ca~(2+)和K~+通道的蛋白质组分.Na~+和Ca~(2+)通道分别由一个构成离子孔洞的主要亚单位和数目不同的其他亚单位组成,K~+通道是单一的多肽.对Na~+、Ca~(2+)通道主要亚单位和K~+通道的氨基酸序列的测定表明,它们之间有许多相似性.已分别给出了三种通道跨膜排列的二级结构图象.考虑了Na~+通道的功能特性,包括电压敏感性、通道开放动力学、门控电流、神经毒素的作用等,已提出几种Na~+通道功能性构象模型.  相似文献   

2.
最近日本京都大学医学院 Numa 实验室丛家兔骨骼肌纯化了钙通道阻断剂二氢嘧啶(dihydropyridine,DHP)的受体,并利用重组 DNA 技术推出其一级结构。比较 DHP 受体、Na~+通道和 K~+通道及由此预测的二级结构,发现三者具有十分相似的共同特征,提示 DHP 受体就是骨骼肌细胞膜上起兴奋收缩偶联作用的电压感受器和 Ca~(2+)通道。因此,Na~+、K~+、Ca~(2+)这三种通道构成由一个祖先基因进化而来的电压门控通道家族。  相似文献   

3.
以 BC_3HI 肌细胞为模型,用膜片-电压固定(patch-clamp)技术,研究观察在单一细胞或膜单通道的Ca~(2+)、Na~+和 K~+的变化。肌肉的分化与膜的电压-门控离子通道(voltage-gated ion channels)的表达是依赖于促细胞分裂剂的消退和细胞的生长停滞。通常,电压-门控通道能诱发肌细胞的特异基因产物,但其致癌性的基本机理仍不明。分化的 BC_3HI 肌细胞表达了机能性的 Ca~(2+)和 Na~+通道,当细胞生长增殖和为某些等位癌基因转染时,机能性的离子通道被阻抑。这种机能性的 Ca~(2+)和 Na~+通道,在促细胞分裂剂消退约5天后,才首次检出Ca~(2+)和 Na~+的内向电流。在促细胞分裂剂消退时,暂时诱发 BC_3HI 细胞的电压-门控通道。为了试验细胞癌基因是否能阻止膜离子通道的表达,以 BC_3HI 细胞的克隆细胞株,即以 BC_3HI 细胞,用癌基因表达载  相似文献   

4.
【目的】戊吡虫胍是将新烟碱类和缩氨脲类杀虫剂杀虫活性部分重新组合的新型杀虫剂。但对于该类杀虫剂究竟如何影响离子通道,通道门控特性和功能是如何变化目前尚未见报道。本实验旨在明确该杀虫剂是否影响电压门控钙通道和钾通道的门控过程,探究其是否为该杀虫剂的潜在作用靶标。【方法】应用全细胞膜片钳技术检测戊吡虫胍对棉铃虫Helicoverpa armigera Hübner中枢神经细胞电压门控Ca~(2+)通道和K~+通道的影响。【结果】戊吡虫胍作用后Ⅰ-Ⅴ曲线和激活曲线均向超极化方向移动10-15 mV,具有显著性统计学差异(P0.05)。稳态失活曲线向超极化方向移动约5 mV,不具有统计学差异(P0.05)。电压门控Ca~(2+)通道峰值电流(I_(peak))有不同程度的降低。随着浓度增大I_(peak)降低有减小的趋势。此外,1μmol·L~(-1)戊吡虫胍作用后钙离子的窗口电流(I_w)面积增加幅度较10μmol·L~(-1)和100μmol·L~(-1)大,为93.20%。提示在一定的测试电压下,该药物作用后处于激活状态的Ca~(2+)通道数目增多。另外,其作用后电压门控钾通道I_(peak)降低。随着浓度增大I_(peak)降低有减小的趋势。同时Ⅰ-Ⅴ曲线下移,激活曲线向去极化方向移动约8 mV,不具有统计学差异(P0.05)。这表明戊吡虫胍作用后K~+通道在较高电位下才能激活。【结论】戊吡虫胍能够有效抑制Ca~(2+)通道和K~+通道I_(peak),并使通道的激活曲线和失活曲线发生移动,影响Ca~(2+)通道和K~+通道的门控特性。表明棉铃虫中枢神经细胞上的电压门控Ca~(2+)通道和K~+通道是戊吡虫胍的潜在作用靶标之一。  相似文献   

5.
为探明大果沙枣树体矿质离子渗透调节机制,比较分析了盐渍化生境中1~12a生树的根、枝和叶部主要矿质阳离子的吸收、分配特征。结果表明:(1)大果沙枣树体内Ca~(2+)的积累量最高(13.79 g/kg),K~+次之(5.92 g/kg),Na~+最低(1.00 g/kg);随着树龄的增大,大果沙枣根部的Na~+以及枝和叶部的K~+、Ca~(2+)、Mg~(2+)的积累量均逐渐增大,而根部的K~+含量则逐渐减少;高龄段(10~12a)树体根部的Na~+累积量显著(P0.05)高于中低龄(1~9a)段。(2)大果沙枣树体内K~+/Na~+最大(15.36),Mg~(2+)/Na~+次之(12.25),Ca~(2+)/Na~+最小(10.51),根和枝部的K~+/Na~+均随着树龄的增大而降低,叶部则表现相反。(3)土壤中的K~+和Mg~(2+)向根方向、根部K~+、Mg~(2+)和Ca~(2+)向枝方向以及根部的K~+和Mg~(2+)向叶方向的选择运移系数均随着树龄的增大呈直线上升趋势。(4)土壤中Na~+与根部Na~+含量呈极显著正相关关系(0.687,P0.01),与叶部的K~+含量呈显著正相关(0.605,P0.05);土壤中K~+含量与根部的Na~+、叶部的K~+分别呈显著和极显著正相关(0.544,0.676),与根部的Mg~(2+)呈显著负相关关系(-0.499)。研究发现,大果沙枣树生长过程中主要通过根部对Na~+的聚积作用,以及K~+、Mg~(2+)和Ca~(2+)在枝、叶部的吸收积累来维持植物体离子平衡,以适应盐渍土壤环境。  相似文献   

6.
冯怀亮  陈大元 《动物学报》1993,39(3):326-333
应用扫描电镜和镜射电镜能谱技术,为猪精子获能前后质膜表面和内部的离子成分进行了研究,结果表明,猪精子获能后质膜表面的Na~+和Al~(3+)升高,而Cl~-和Ca~(2+)降低;精子顶体内Na~+和Cl~-降低,Ca~(2+)、K~+和Fe~(2+)升高;中段线粒体内的Na~+、Ca~(2+)和Fe~(2+)升高,而K~+和Cl~-降低。文章分析了精子获能后顶体内Na~+、Cl~-、K~+、Ca~(2+)和Fe~(2+)变化的浓度比和摩尔比。  相似文献   

7.
以冰叶日中花(Mesembryanthemum crystallinum L.)实生苗为材料,经NaCl、NaCl+ CaCl_2、NaCl+LaCl_3处理后,利用电感耦合等离子发射光谱仪检测叶、茎、根中Na~+、K~+、Ca~(2+)、Mg~(2+)含量,计算K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值,利用非损伤微测技术测定根尖Na~+流和K~+流,研究盐胁迫下钙在维持离子平衡中的作用。结果显示,NaCl处理后,冰叶日中花各器官中Na~+含量增加,K~+、Ca~(2+)、Mg~(2+)含量降低,离子比值降低;CaCl_2处理降低了Na~+含量,提高了K~+、Ca~(2+)、Mg~(2+)含量,离子比值升高,而LaCl_3处理后的结果相反。经NaCl处理24 h后,冰叶日中花根尖Na~+和K~+明显外流,加入CaCl_2后,Na~+外流速度显著增加,K~+外流速度受到抑制,而加入LaCl_3后则降低了Na~+的外流速度,促进了K~+的外流。研究结果表明冰叶日中花受到盐胁迫后,钙参与了促进根部Na~+外排、抑制K~+外流的过程,进而保持各器官中较低的Na~+含量,表明钙在维持和调控离子平衡中起到重要作用。  相似文献   

8.
向敏  刘强  李妮亚  李伟  张云云 《广西植物》2016,36(4):387-396
为了比较引进红树与乡土红树的耐盐性差异,该研究以引进红树植物拉关木(Laguncularia racemosa)和乡土红树植物木榄(Bruguiera gymnorrhiza)与秋茄(Kandelia obovata)幼苗作为实验材料,分析其在不同Na Cl浓度(100、200、300、400 mmol·L~(-1))处理下各器官离子浓度(Na~+、Cl~–、K~+、Ca~(2+)和Mg~(2+))和叶光合作用的变化。结果表明:(1)高盐胁迫(400 mmol·L~(-1)Na Cl,28 d)处理下,拉关木根系Na~+增幅较小,秋茄根、叶Cl~–含量增幅均高于木榄和拉关木,说明拉关木在较高的盐浓度时能限制根系对Na~+、Cl~–的吸收,减少向地上部分运输。(2)高盐胁迫均增加3种红树根、叶的K~+浓度(木榄叶K~+略有降低,差异不显著),表明3种红树均可吸收K~+,来限制Na~+对植物的伤害;同时,降低3种红树根Ca~(2+)浓度,但拉关木根Ca~(2+)下降幅度小于秋茄和木榄,说明拉关木具有更强的防止Ca~(2+)流失的能力。(3)拉关木根维持Na~+/K~+、Na~+/Ca~(2+)平衡的能力强于秋茄和木榄。(4)高盐胁迫引起秋茄与木榄光合速率均降低,而拉关木光合速率却增加了54.1%。综上所述,拉关木能限制根系对Na Cl的吸收,有效维持Na~+/K~+、Na~+/Ca~(2+)的平衡,并保持较高的光合速率,这表明拉关木与木榄和秋茄相比具有更高的耐盐性。  相似文献   

9.
盐胁迫下外源脯氨酸明显促进冰叶松叶菊愈伤组织中Ca~(2+)、Na~+和K~+及脯氨酸的积累。低浓度丙二醛(MDA)对Na~+、K~+和Ca~(2+)的积累略有促进,而高浓度MDA则有抑制作用。无NaCl时,MDA对细胞中脯氨酸的积累有促进,而在NaCl胁迫下则有抑制作用。  相似文献   

10.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

11.
Voltage-gated ion channels (VGCs) mediate selective diffusion of ions across cell membranes to enable many vital cellular processes. Three-dimensional structure data are lacking for VGC proteins; hence, to better understand their function, there is a need to identify the conserved motifs using sequence analysis methods. In this study, we have used a profile-to-profile alignment method to identify several new conserved motifs specific to each transmembrane segment (TMS) of the voltage-sensing and the pore-forming modules of Ca2+, Na+, and K+ channel subfamilies. For Ca2+ and Na+, the functional theme of motif conservation is similar in all segments while they differ with those of the K+ channel proteins. Nevertheless, the conservation is strikingly similar in the S4 segment of the voltage-sensing module across all subfamilies. In each subfamily and for each TMS, we have identified conserved motifs/residues and correlated their functional significance and disease associations in human, using mutational data from the literature.  相似文献   

12.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic Ca2+ concentration have been shown to trigger ion efflux from guard cells, resulting in stomatal closure. Here, we report a novel type of largely voltage-independent K+-selective ion channel in the vacuolar membrane of guard cells that is activated by physiological increases in the cytoplasmic Ca2+ concentration. These vacuolar K+ (VK) channels had a single channel conductance of 70 pS with 100 mM KCI on both sides of the membrane and were highly selective for K+ over NH4+ and Rb+. Na+, Li+, and Cs+ were not measurably permeant. The Ca2+, voltage, and pH dependences, high selectivity for K+, and high density of VK channels in the vacuolar membrane of guard cells suggest a central role for these K+ channels in the initiation and control of K+ release from the vacuole to the cytoplasm required for stomatal closure. The activation of K+-selective VK channels can shift the vacuolar membrane to more positive potentials on the cytoplasmic side, sufficient to activate previously described slow vacuolar cation channels (SV-type). Analysis of the ionic selectivity of SV channels demonstrated a Ca2+ over K+ selectivity (permeability ratio for Ca2+ to K+ of ~3:1) of these channels in broad bean guard cells and red beet vacuoles, suggesting that SV channels play an important role in Ca2+-induced Ca2+ release from the vacuole during stomatal closure. A model is presented suggesting that the interaction of VK and SV channel activities is crucial in regulating vacuolar K+ and Ca2+ release during stomatal closure. Furthermore, the possibility that the ubiquitous SV channels may represent a general mechanism for Ca2+-induced Ca2+ release from higher plant vacuoles is discussed.  相似文献   

13.
A new neuroactive protein, beta-leptinotarsin-h, has been purified to near-homogeneity from the hemolymph of the beetle Leptinotarsa haldemani by column chromatography. beta-Leptinotarsin-h has a molecular weight of 57 000. Rat brain synaptosomes incubated with appropriate radioactive precursors release acetylcholine (ACh), norepinephrine, and 4-aminobutyrate when exposed to beta-leptinotarin-h, but do not release lactate dehydrogenase. Release of ACh has been examined in some detail. Release of ACh varies with the concentration of beta-leptinotarsin-h in a rectangular hyperbolic fashion. Half-maximal release is stimulated by a concentration of 50 ng/mL. Altering the ionic composition of the bathing solution affects the release in a manner which suggests that neither Na+ channels nor K+ channels are affected by beta-leptinotarsin-h but that the beta-leptinotarsin-h acts to increase permeability to Ca2+. Varying the concentration of Ba2+, Sr2+, Co2+, and Cd2+ indicates that beta-leptinotarsin-h acts to open the voltage-sensitive presynaptic Ca2+ channel. beta-Leptinotarsin-h may be a useful tool for studying the Ca2+ channel associated with the release of neurotransmitters.  相似文献   

14.
Ca2+ permeation in cyclic nucleotide-gated channels.   总被引:4,自引:1,他引:3       下载免费PDF全文
C Dzeja  V Hagen  U B Kaupp    S Frings 《The EMBO journal》1999,18(1):131-144
Cyclic nucleotide-gated (CNG) channels conduct Na+, K+ and Ca2+ currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2+ concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2+ signaling depends on its specific Ca2+ conductance, it is necessary to analyze Ca2+ permeation for each individual channel type. We have analyzed Ca2+ permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2+ current over the physiological range of Ca2+ concentrations and found that Ca2+ permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2+ permeation is controlled by the Ca2+-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2+ signals.  相似文献   

15.
Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae.   总被引:4,自引:0,他引:4  
Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na+ or K+ equally well, and Ca2+ to a lesser extent. Its open probability (Po) is voltage-dependent, peaking at about -80 mV (cytoplasm negative), and falling to near zero at +80 mV. Elevated cytoplasmic Ca2+, alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K+ over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca2+, this channel is activated by positive going membrane voltages: mean Po is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg2+ or Na+, block the yeast plasma-membrane K+ channel in a similar but less pronounced manner.  相似文献   

16.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.  相似文献   

17.
Shin N  Soh H  Chang S  Kim DH  Park CS 《Biophysical journal》2005,89(5):3111-3119
Small-conductance Ca2+-activated potassium channels (SK(Ca) channels) are heteromeric complexes of pore-forming main subunits and constitutively bound calmodulin. SK(Ca) channels in neuronal cells are activated by intracellular Ca2+ that increases during action potentials, and their ionic currents have been considered to underlie neuronal afterhyperpolarization. However, the ion selectivity of neuronal SK(Ca) channels has not been rigorously investigated. In this study, we determined the monovalent cation selectivity of a cloned rat SK(Ca) channel, rSK2, using heterologous expression and electrophysiological measurements. When extracellular K+ was replaced isotonically with Na+, ionic currents through rSK2 reversed at significantly more depolarized membrane potentials than the value expected for a Nernstian relationship for K+. We then determined the relative permeability of rSK2 for monovalent cations and compared them with those of the intermediate- and large-conductance Ca2+-activated K+ channels, IK(Ca) and BK(Ca) channels. The relative permeability of the rSK2 channel was determined as K+(1.0)>Rb+(0.80)>NH(4)+(0.19) approximately Cs+(0.19)>Li+(0.14)>Na+(0.12), indicating substantial permeability of small ions through the channel. Although a mutation near the selectivity filter mimicking other K+-selective channels influenced the size-selectivity for permeant ions, Na+ permeability of rSK2 channels was still retained. Since the reversal potential of endogenous SK(Ca) current is determined by Na+ permeability in a physiological ionic environment, the ion selectivity of native SK(Ca) channels should be reinvestigated and their in vivo roles may need to be restated.  相似文献   

18.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

19.
1. Na+ as well as Li+ move across the apical membrane through amiloride-sensitive ionic channels. 2. K+ movements across the apical membrane occur through Ba2+- and Cs+-sensitive channels which do not allow the passage of Na+ or Li+. 3. A third pathway in the apical membrane is permeable for Na+, K+, Cs+, Rb+, NH+4 and Ti+. The currents carried by these monovalent cations are blocked by Ca2+ and divalent cations as well as La3+. 4. In the urinary bladder, the Ca2+-sensitive currents are stimulated by oxytocin, activators of cytosolic cAMP and cAMP analogues. Also the oxytocin activated currents are blocked by divalent cations and La3+. 5. Nanomolar concentrations of mucosal Ag+ activate the third channel and open the pathway for movements of Ca2+, Ba2+ and Mg2+, which are known to permeate through Ca2+ channels in excitable tissues.  相似文献   

20.
Cytolysin-induced membrane damage (which requires low Ca2+) has been studied 1) in E by assay of hemolysis, 2) in Lettre cells by measurement of transmembrane potential, intracellular content of K+ and Na+, leakage of phosphoryl[3H]choline or 51Cr from [3H]choline-labeled or 51CrO4(2-)-labeled cells and leakage of lactate dehydrogenase, and 3) in phospholipid bilayers by measurement of electrical conductivity changes. In Lettre cells, damage is restricted and reversible: little lactate dehydrogenase leaks from cells that leak substantial amounts of Na+, K+, and phosphoryl[3H]choline; at low amounts of cytolysin, membrane potential and intracellular content of Na+ and K+ recover within minutes. In E and Lettre cells, membrane damage is inhibited by Zn2+, by high Ca2+, or by low pH. Inhibition is reversible: addition of EGTA to Zn2+-protected E or Lettre cells (incubated in the presence of cytolysin, low Ca2+ and Zn2+) initiates leakage; removal of Zn2+ (and cytolysin and Ca2+) by washing also initiates leakage; such leakage is again sensitive to Zn2+, high Ca2+, or H+. In phospholipid bilayers, channels induced by cytolysin (at low Ca2+) are partially closed by negative voltage; Ca2+, Zn2+, or H+ promote channel closure. Channels are re-opened (only partially in the case of Zn2+) by positive voltage. From all these results it is concluded that the action of cytolysin on membranes is similar to that of other pore-forming agents: damage does not necessarily lead to lysis of nucleated cells, and can be prevented by Ca2+, Zn2+, or H+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号