首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell adhesion assays   总被引:1,自引:0,他引:1  
Cell adhesion makes an important contribution to the maintenance of tissue structure, the promotion of cell migration, and the transduction of information about the cell microenvironment across the plasma membrane. An ability to quantitate adhesion has proven to be extremely valuable for those researchers studying the molecular mechanisms underlying these processes. This article will outline in detail two standard assays used for quantitating the adhesion of cells to an immobilized substrate. First, an attachment assay, which employs a colorimetric detection of bound cells, and second, a spreading assay, which employs phase contrast microscopy to measure the flattening of adherent cells.  相似文献   

2.
Bo Li  Sean?X. Sun 《Biophysical journal》2014,107(7):1532-1541
Cell migration plays a pivotal role in many physiologically important processes such as embryogenesis, wound-healing, immune defense, and cancer metastasis. Although much effort has been directed toward motility of individual cells, the mechanisms underpinning collective cell migration remain poorly understood. Here we develop a collective motility model that incorporates cell mechanics and persistent random motions of individual cells to study coherent migratory motions in epithelial-like monolayers. This model, in absence of any external chemical signals, is able to explain coordinate rotational motion seen in systems ranging from two adherent cells to multicellular assemblies. We show that the competition between the active persistent force and random polarization fluctuation is responsible for the robust rotation. Passive mechanical coupling between cells is necessary but active chemical signaling between cells is not. The predicted angular motions also depend on the geometrical shape of the underlying substrate: cells exhibit collective rotation on circular substrates, but display linear back-and-forth motion on long and narrow substrates.  相似文献   

3.
Cell migration plays a pivotal role in many physiologically important processes such as embryogenesis, wound-healing, immune defense, and cancer metastasis. Although much effort has been directed toward motility of individual cells, the mechanisms underpinning collective cell migration remain poorly understood. Here we develop a collective motility model that incorporates cell mechanics and persistent random motions of individual cells to study coherent migratory motions in epithelial-like monolayers. This model, in absence of any external chemical signals, is able to explain coordinate rotational motion seen in systems ranging from two adherent cells to multicellular assemblies. We show that the competition between the active persistent force and random polarization fluctuation is responsible for the robust rotation. Passive mechanical coupling between cells is necessary but active chemical signaling between cells is not. The predicted angular motions also depend on the geometrical shape of the underlying substrate: cells exhibit collective rotation on circular substrates, but display linear back-and-forth motion on long and narrow substrates.  相似文献   

4.
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data.  相似文献   

5.
There is good evidence that the three main compartments of the brain, i.e. extracellular space, neurones and glial cells, change their volume during physiological and pathophysiological neuronal activity. However, there is strikingly little knowledge about the mechanisms underlying such alterations in cell volume. For this purpose, a better understanding of the electrophysiological behavior of the neurones and glial cells during volume changes is necessary. Examples are discussed for which changes in cell volume can be derived from the underlying changes in membrane permeabilities. Volume regulatory mechanisms in the brain have not been described under isotonic conditions. However, a rapid volume regulatory decrease is occurring in cultured glial cells during exposure to hypotonic solutions. In contrast, in these cells no volume regulatory increase was found during superfusion with hypertonic media. On the other hand, the entire brain is able to compensate chronic hypertonic perturbations within hours to days. Interestingly, not only ion fluxes induce cellular volume changes but, in turn, water movements can also influence ion fluxes in both neurones and glial cells. With respect to this it should be considered that volume regulatory membrane processes might not exclusively be activated by changes in transmembranal ion gradient, but also by changes of membrane surface shape. Future studies on cellular mechanisms of volume regulation in the brain should imply a combined use of recent techniques such as computerized video-imaging, radiotracer flux measurements and ion-sensitive microelectrodes in defined cell cultures. Optical monitoring and ion-sensitive microelectrodes should enable measurements of volume changes in identified cellular elements of intact nervous structures such as brain slices.  相似文献   

6.
7.
Stem cell self-renewal versus differentiation fate decisions are difficult to characterize and analyze due to multiple competing rate processes occurring simultaneously among heterogeneous cell subpopulations. To address this challenge, we describe a mathematical model for cell population dynamics that allows flow cytometry measurement of population distributions of molecular markers to be deconvoluted in terms of subpopulation-specific rate parameters distinguishing commitment to differentiation, proliferation of differentiated cells, and proliferation of undifferentiated cells (i.e., self-renewal). We validate this model-based parameter determination by means of dedicated, independent cell-tracking studies. Our approach facilitates interpretation of relationships underlying effects of external cues on cell responses in differentiating cultures via intracellular signals.  相似文献   

8.
9.
Plant mature cells have the capability to reverse their state of differenUation and produce new organs under cultured conditions. Two phases, dedifferentiation and redifferentiation, are commonly characterized during in vitro organogenesis.In these processes, cells undergo fate switch several times regulated by both extrinsic and intrinsic factors, which are associated with reentry to the cell cycle, the balance between euchromatin and heterochromatin, reprogramming of gene expression, and so forth. This short article reviews the advances in the mechanism of organ regeneration from plant somatic cells in molecular, genomic and epigenetic aspects, aiming to provide important information on the mechanism underlying cell fate switch during in vitro plant organogenesis.  相似文献   

10.
Arabidopsis leaf trichomes are unicellular hairs that display a highly characteristic cell form that has a fixed orientation with respect to the basal-distal leaf axis. The genetic, molecular and cell biological analysis of trichome morphogenesis reveal that various cellular processes need to be coordinated including regulation of the cell cycle, the cell size and the actin and tubulin cytoskeleton. Here we will focus on what is known about the establishment and maintenance of positional information during trichome formation.  相似文献   

11.
Differentiation from a multipotent stem or progenitor state to a mature cell is an essentially irreversible process. The associated changes in gene expression patterns exhibit time-directionality. This “arrow of time” in the collective change of gene expression across multiple stable gene expression patterns (attractors) is not explained by the regulated activation, the suppression of individual genes which are bidirectional molecular processes, or by the standard dynamical models of the underlying gene circuit which only account for local stability of attractors. To capture the global dynamics of this nonequilibrium system and gain insight in the time-asymmetry of state transitions, we computed the quasipotential landscape of the stochastic dynamics of a canonical gene circuit that governs branching cell fate commitment. The potential landscape reveals the global dynamics and permits the calculation of potential barriers between cell phenotypes imposed by the circuit architecture. The generic asymmetry of barrier heights indicates that the transition from the uncommitted multipotent state to differentiated states is inherently unidirectional. The model agrees with observations and predicts the extreme conditions for reprogramming cells back to the undifferentiated state.  相似文献   

12.
13.
Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.  相似文献   

14.
Quantitative cell biology with the Virtual Cell   总被引:12,自引:0,他引:12  
Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational models, comprising quantitative data on the interacting molecular participants in these events, provide a means for applying the scientific method to these complex systems. The Virtual Cell is a computational environment designed for cell biologists, to facilitate the construction of models and the generation of predictive simulations from them. This review summarizes how a Virtual Cell model is assembled and describes the physical principles underlying the calculations that are performed. Applications to problems in nucleocytoplasmic transport and intracellular calcium dynamics will illustrate the power of this paradigm for elucidating cell biology.  相似文献   

15.
The motion of small bacteria consists of two phases: relatively long runs alternate with intermittent stops, back-ups, or tumbles, depending on the species. In polar monotrichous bacteria, the flagellum is anchored at the cell pole inherited from the parent generation (old pole) and is surrounded by a chemoreceptor cluster. During forward swimming, the leading pole is always the pole recently formed in cell division (new pole). The flagella of the peritrichous bacterium Escherichia coli often form a bundle behind the old pole. Its cell orientation and receptor positioning during runs generally mimic that of monotrichous bacteria. When encountering a solid surface, peritrichous bacteria exhibit a circular motion with the leading pole dipping downward. Some polar monotrichous bacteria also perform circular motion near solid boundaries, but during back-ups. In this case, the leading pole points upward. Very little is known about behavior near milieu-air interfaces. Biophysical simulations have revealed some of the mechanisms underlying these phenomena, but leave many questions unanswered. Combining biophysics with molecular techniques will certainly advance our understanding of bacterial locomotion.  相似文献   

16.
During migration, asymmetrically polarized cells achieve motion by coordinating the protrusion and retraction of their leading and trailing edges, respectively. Although it is well known that local changes in the dynamics of actin cytoskeleton remodeling drive these processes, neither the cytoskeletal rheological properties of these migrating cells are well quantified nor is it understand how these rheological properties are regulated by underlying molecular processes. In this report, we have used soft lithography to create morphologically polarized cells in order to examine rheological differences between the front and rear zone of an NIH 3T3 cell posed for migration. In addition, we trapped superparamagnetic beads with optical tweezers and precisely placed them at specific locations on the immobilized cells. The beads were then allowed to endocytose overnight before magnetic tweezers experiments were performed to measure the local rheological properties of the leading and trailing edges. Our results indicate that the leading edge has an approximately 1.9 times higher shear modulus than the trailing edge and that this increase in shear modulus correlates with a greater density of filamentous actin, as measured by phalloidin-staining observed through quantitative 3D microscopy.  相似文献   

17.
Cell Separation Processes in Plants--Models, Mechanisms and Manipulation   总被引:15,自引:0,他引:15  
Abscission and dehiscence are developmental processes that involvethe co-ordinated breakdown of the cell wall matrix at discretesites and at specific stages during the life cycle of a plant.In this review we examine the events that influence the differentiationof abscission and dehiscence zone cells and the changes thatare associated with wall degradation. There is convincing evidenceto believe that ethylene and auxin co-ordinate the timing ofleaf, flower and fruit abscission but the events that regulatedehiscence and seed abscission are unclear. The use of transgenicplants and model systems such as Arabidopsis is assisting ourunderstanding of the mechanisms that regulate abscission anddehiscence and the application of this information will advanceour understanding of cell separation processes in general. Armedwith this knowledge it should be possible to either delay oraccelerate abscission and dehiscence, and this could have majorbenefits for the agricultural and horticultural industries.Copyright 2000 Annals of Botany Company Abscission, dehiscence, cell separation, wall degradation, gene expression, polygalacturonase, ß-1,4-glucanase, pathogenesis-related proteins, ethylene  相似文献   

18.
Cell culture models of differentiation   总被引:5,自引:0,他引:5  
F M Watt 《FASEB journal》1991,5(3):287-294
  相似文献   

19.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

20.
《Biophysical journal》2020,118(10):2549-2560
In cell extrusion, a cell embedded in an epithelial monolayer loses its apical or basal surface and is subsequently squeezed out of the monolayer by neighboring cells. Cell extrusions occur during apoptosis, epithelial-mesenchymal transition, or precancerous cell invasion. They play important roles in embryogenesis, homeostasis, carcinogenesis, and many other biological processes. Although many of the molecular factors involved in cell extrusion are known, little is known about the mechanical basis of cell extrusion. We used a three-dimensional (3D) vertex model to investigate the mechanical stability of cells arranged in a monolayer with 3D foam geometry. We found that when the cells composing the monolayer have homogeneous mechanical properties, cells are extruded from the monolayer when the symmetry of the 3D geometry is broken because of an increase in cell density or a decrease in the number of topological neighbors around single cells. Those results suggest that mechanical instability inherent in the 3D foam geometry of epithelial monolayers is sufficient to drive epithelial cell extrusion. In the situation in which cells in the monolayer actively generate contractile or adhesive forces under the control of intrinsic genetic programs, the forces act to break the symmetry of the monolayer, leading to cell extrusion that is directed to the apical or basal side of the monolayer by the balance of contractile and adhesive forces on the apical and basal sides. Although our analyses are based on a simple mechanical model, our results are in accordance with observations of epithelial monolayers in vivo and consistently explain cell extrusions under a wide range of physiological and pathophysiological conditions. Our results illustrate the importance of a mechanical understanding of cell extrusion and provide a basis by which to link molecular regulation to physical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号