首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen cores and plant and animal fossils suggest that global climate changes at the end of the last glacial period caused range expansions in organisms indigenous to the North American desert regions, but this suggestion has rarely been investigated from a population genetic perspective. In order to investigate the impact of Pleistocene climate changes and glacial/interglacial cycling on the distribution and population structure of animals in North American desert communities, biogeographical patterns in the flightless, warm-desert cactus beetles, Moneilema gigas and Moneilema armatum, were examined using mitochondrial DNA (mtDNA) sequence data from the cytochrome oxidase I (COI) gene. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis and coalescent modelling using the programs mdiv and fluctuate were used to identify demographically independent populations, and to test the hypothesis that Pleistocene climate changes caused recent range expansions in these species. A sign test was used to evaluate the probability of observing concerted population growth across multiple, independent populations. The phylogeographical and nested clade analyses reveal a history of northward expansion in both of these species, as well as a history of past range fragmentation, followed by expansion from refugia. The coalescent analyses provide highly significant evidence for independent range expansions from multiple refugia, but also identify biogeographical patterns that predate the most recent glacial period. The results indicate that widespread desert environments are more ancient than has been suggested in the past.  相似文献   

2.
Intra-deme molecular diversity in spatially expanding populations   总被引:23,自引:0,他引:23  
We report here a simulation study examining the effect of a recent spatial expansion on the pattern of molecular diversity within a deme. We first simulate a range expansion in a virtual world consisting in a two-dimensional array of demes exchanging a given proportion of migrants (m) with their neighbors. The recorded demographic and migration histories are then used under a coalescent approach to generate the genetic diversity in a sample of genes. We find that the shape of the gene genealogies and the overall pattern of diversity within demes depend not only on the age of the expansion but also on the level of gene flow between neighboring demes, as measured by the product Nm, where N is the size of a deme. For small Nm values (< approximately 20 migrants sent outwards per generation), a substantial proportion of coalescent events occur early in the genealogy, whereas with larger levels of gene flow, most coalescent events occur around the time of the onset of the spatial expansion. Gene genealogies are star shaped, and mismatch distributions are unimodal after a range expansion for large Nm values. In contrast, gene genealogies present a mixture of both very short and very long branch lengths, and mismatch distributions are multimodal for small Nm values. It follows that statistics used in tests of selective neutrality like Tajima's D statistic or Fu's F(S) statistic will show very significant negative values after a spatial expansion only in demes with high Nm values. In the context of human evolution, this difference could explain very simply the fact that analyses of samples of mitochondrial DNA sequences reveal multimodal mismatch distributions in hunter-gatherers and unimodal distributions in post-Neolithic populations. Indeed, the current simulations show that a recent increase in deme size (resulting in a larger Nm value) is sufficient to prevent recent coalescent events and thus lead to unimodal mismatch distributions, even if deme sizes (and therefore Nm values) were previously much smaller. The fact that molecular diversity within deme is so dependent on recent levels of gene flow suggests that it should be possible to estimate Nm values from samples drawn from a single deme.  相似文献   

3.
Matsen FA  Wakeley J 《Genetics》2006,172(1):701-708
In this article we apply some graph-theoretic results to the study of coalescence in a structured population with migration. The graph is the pattern of migration among subpopulations, or demes, and we use the theory of random walks on graphs to characterize the ease with which ancestral lineages can traverse the habitat in a series of migration events. We identify conditions under which the coalescent process in populations with restricted migration, such that individuals cannot traverse the habitat freely in a single migration event, nonetheless becomes identical to the coalescent process in the island migration model in the limit as the number of demes tends to infinity. Specifically, we first note that a sequence of symmetric graphs with Diaconis-Stroock constant bounded above has an unstructured Kingman-type coalescent in the limit for a sample of size two from two different demes. We then show that circular and toroidal models with long-range but restricted migration have an upper bound on this constant and so have an unstructured-migration coalescent in the limit. We investigate the rate of convergence to this limit using simulations.  相似文献   

4.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

5.
Pleistocene sea-level fluctuations profoundly changed landmass configurations around northern Australia. The cyclic emergence of the Torres Strait land bridge and concomitant shifts in the distribution of shallow-water marine habitats repeatedly sundered east and west coast populations. These biogeographical perturbations invoke three possible scenarios regarding the directions of interglacial range expansion: west to east, east to west, or bidirectional. We evaluated these scenarios for the olive sea snake, Aipysurus laevis, by exploring its genetic structure around northern Australia based on 354 individuals from 14 locations in three regions (Western Australia, WA; Gulf of Carpentaria, GoC; Great Barrier Reef, GBR). A 726-bp fragment of the mitochondrial DNA ND4 region revealed 41 variable sites and 38 haplotypes, with no shared haplotypes among the three regions. Population genetic structure was strong overall, phiST=0.78, P<0.001, and coalescent analyses revealed no migration between regions. Genetic diversity was low in the GBR and GoC and the genetic signatures of these regions indicated range or population expansions consistent with their recent marine transgressions around 7000 years ago. By contrast, genetic diversity on most WA reefs was higher and there were no signals of recent expansion events on these reefs. Phylogenetic analyses indicated that GBR and GoC haplotypes were derived from WA haplotypes; however, statistical parsimony suggested that recent range expansion in the GBR-GoC probably occurred from east coast populations, possibly in the Coral Sea. Levels of contemporary female-mediated gene flow varied within regions and reflected potential connectivity among populations afforded by the different regional habitat types.  相似文献   

6.
We employed a multilocus approach to examine the effects of population subdivision and natural selection on DNA polymorphism in 2 closely related wild tomato species (Solanum peruvianum and Solanum chilense), using sequence data for 8 nuclear loci from populations across much of the species' range. Both species exhibit substantial levels of nucleotide variation. The species-wide level of silent nucleotide diversity is 18% higher in S. peruvianum (pi(sil) approximately 2.50%) than in S. chilense (pi(sil) approximately 2.12%). One of the loci deviates from neutral expectations, showing a clinal pattern of nucleotide diversity and haplotype structure in S. chilense. This geographic pattern of variation is suggestive of an incomplete (ongoing) selective sweep, but neutral explanations cannot be entirely dismissed. Both wild tomato species exhibit moderate levels of population differentiation (average F(ST) approximately 0.20). Interestingly, the pooled samples (across different demes) exhibit more negative Tajima's D and Fu and Li's D values; this marked excess of low-frequency polymorphism can only be explained by population (or range) expansion and is unlikely to be due to population structure per se. We thus propose that population structure and population/range expansion are among the most important evolutionary forces shaping patterns of nucleotide diversity within and among demes in these wild tomatoes. Patterns of population differentiation may also be impacted by soil seed banks and historical associations mediated by climatic cycles. Intragenic linkage disequilibrium (LD) decays very rapidly with physical distance, suggesting high recombination rates and effective population sizes in both species. The rapid decline of LD seems very promising for future association studies with the purpose of mapping functional variation in wild tomatoes.  相似文献   

7.
Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times.  相似文献   

8.
Understanding population structure and areas of demographic persistence and transients is critical for effective species management. However, direct observational evidence to address the geographic scale and delineation of ephemeral or persistent populations for many marine fishes is limited. The Lined seahorse (Hippocampus erectus) can be commonly found in three western Atlantic zoogeographic provinces, though inhabitants of the temperate northern Virginia Province are often considered tropical vagrants that only arrive during warm seasons from the southern provinces and perish as temperatures decline. Although genetics can locate regions of historical population persistence and isolation, previous evidence of Virginia Province persistence is only provisional due to limited genetic sampling (i.e., mitochondrial DNA and five nuclear loci). To test alternative hypotheses of historical persistence versus the ephemerality of a northern Virginia Province population we used a RADseq generated dataset consisting of 11,708 single nucleotide polymorphisms (SNP) sampled from individuals collected from the eastern Gulf of Mexico to Long Island, NY. Concordant results from genomic analyses all infer three genetically divergent subpopulations, and strongly support Virginia Province inhabitants as a genetically diverged and a historically persistent ancestral gene pool. These results suggest that individuals that emerge in coastal areas during the warm season can be considered “local” and supports offshore migration during the colder months. This research demonstrates how a large number of genes sampled across a geographical range can capture the diversity of coalescent histories (across loci) while inferring population history. Moreover, these results clearly demonstrate the utility of population genomic data to infer peripheral subpopulation persistence in difficult-to-observe species.  相似文献   

9.
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio-temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.  相似文献   

10.
We gathered mitochondrial DNA sequences (557 bp from the control region in 935 specimens and 668 bp of the cytochrome b gene in 139 specimens) of Pacific herring collected from 20 nearshore localities spanning the species' extensive range along the North Pacific coastlines of Asia and North America. Haplotype diversity and nucleotide diversity were high, and three major phylogeographic lineages (sequence divergences ca. 1.5%) were detected. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidence, we infer that the genetic make-up of extant populations of C. pallasii was shaped by Pleistocene environmental impacts on the historical demography of this species. A deep genealogical split that cleanly distinguishes populations in the western vs. eastern North Pacific probably originated as a vicariant separation associated with a glacial cycle that drove the species southward and isolated two ancestral populations in Asia and North America. Another deep genealogical split may have involved either a vicariant isolation of a third herring lineage (perhaps originally in the Gulf of California) or it may have resulted simply from the long coalescent times that are possible in large populations. Coalescent analyses showed that all the three evolutionary lineages of C. pallasii experienced major expansions in their most recent histories after having remained more stable in the preceding periods. Independent of the molecular calibration chosen, populations of C. pallasii appear to have remained stable or grown throughout the periods that covered at least two major glaciations, and probably more.  相似文献   

11.
Across western North America, Mimulus guttatus exists as many local populations adapted to site‐specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole‐genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree‐based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.  相似文献   

12.
Kai Zeng  Pádraic Corcoran 《Genetics》2015,201(4):1539-1554
It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.  相似文献   

13.
Improving the realism of spatially explicit demographic models is important for better inferring the history of past populations and for understanding the genetic bases of adaptation and speciation. One particular type of demographic event to take into account is long-distance dispersal (LDD). The goals of this study are to explore the impact of various levels of LDD on genetic diversity and to show to what extent LDD levels can be correctly inferred from multilocus data sets using an approximate Bayesian computation approach. We therefore incorporated LDD into a 2D stepping stone forward simulation framework coupled to a coalescent backward simulation step to generate genetic diversity at 100 microsatellite markers under various demographic conditions relevant to recent human evolution. Our results confirm that LDD considerably increases genetic diversity within demes and decreases levels of diversity between demes. By controlling the spatial occurrence of LDD, it appears that LDD events occurring during a phase of range expansion into new territories are more important in maintaining genetic diversity than those occurring in the wake of the expansion or when colonization is over. We also show that it is possible to infer whether LDD has occurred during a range expansion, but our results suggest that one can only approximately estimate the extent of LDD based on genetic summary statistics.  相似文献   

14.
We study the ancestral genetic process for samples from two large, subdivided populations that are connected by migration to, from, and within a small set of subpopulations, or demes. We consider convergence to an ancestral limit process as the numbers of demes in the two large, subdivided populations tend to infinity. We show that the ancestral limit process for a sample includes a recent instantaneous adjustment to the sample size and structure followed by a more ancient process that is identical to the usual structured coalescent, but with different scaled parameters. This justifies the application of a modified structured coalescent to some hierarchically structured populations.  相似文献   

15.
We study the ancestral genetic process for samples from two large, subdivided populations that are connected by migration to, from, and within a small set of subpopulations, or demes. We consider convergence to an ancestral limit process as the numbers of demes in the two large, subdivided populations tend to infinity. We show that the ancestral limit process for a sample includes a recent instantaneous adjustment to the sample size and structure followed by a more ancient process that is identical to the usual structured coalescent, but with different scaled parameters. This justifies the application of a modified structured coalescent to some hierarchically structured populations.  相似文献   

16.
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide polymorphism (SNP) markers in 351 accessions from the whole species range using a matrix-assisted laser desorption/ionization time-of-flight assay, and by sequencing of nine unlinked short genomic regions in a subset of 64 accessions. The observed frequency distribution of SNPs is not consistent with a constant-size neutral model of sequence polymorphism due to an excess of rare polymorphisms. There is evidence for a significant population structure as indicated by differences in genetic diversity between geographic regions. Accessions from Central Asia have a low level of polymorphism and an increased level of genome-wide linkage disequilibrium (LD) relative to accessions from the Iberian Peninsula and Central Europe. Cluster analysis with the structure program grouped Eurasian accessions into K=6 clusters. Accessions from the Iberian Peninsula and from Central Asia constitute distinct populations, whereas Central and Eastern European accessions represent admixed populations in which genomes were reshuffled by historical recombination events. These patterns likely result from a rapid postglacial recolonization of Eurasia from glacial refugial populations. Our analyses suggest that mapping populations for association or LD mapping should be chosen from regional rather than a species-wide sample or identified genetically as sets of individuals with similar average genetic distances. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
The evolution of long-distance migratory behavior from sedentary populations is a central problem in studies of animal migration. Three crucial issues that remain unresolved are: (1) the biotic and abiotic factors promoting evolution of migratory behavior, (2) the geographic origin of ancestral sedentary populations, and (3) the time scale over which migration evolves. We test the role of postglacial population expansions during the Quaternary in driving the evolution of songbird migration against prevailing views favoring the role of intraspecific competition. In contrast to previous attempts to investigate these questions using interspecific phylogenies, we adopt an intraspecific approach and examine the phylogeography of a North American songbird, the chipping sparrow (Spizella passerina), which exhibits both long-distance migratory behavior in temperate North America and sedentary behavior in Mexico and Central America. We show that migratory populations descend from sedentary populations in southern Mexico and that migration has evolved as a result of a northward population expansion into temperate North America since the last glacial maximum 18,000 years ago. Migration appears to have evolved rapidly in some species as populations colonized areas of high seasonality in the temperate zone. The phylogeography of the yellow-eyed junco (Junco phaeonotus), a strictly sedentary species, provides a null model supporting the view that northward range expansions were driven solely by environmental factors and not by a predisposition to evolve migratory behavior. These results provide the strongest evidence to date that historical climate patterns can drive the rapid evolution of avian migration in natural populations, and they suggest a general mechanism for the repeated evolution of migration within and across bird lineages.  相似文献   

18.
X. Hua    W. Wang    W. Yin    Q. He    B. Jin    J. Li    J. Chen    C. Fu 《Journal of fish biology》2009,75(2):354-367
This study extended the geographic coverage of a previous study to explore population genetic structure and demographic history in the Ariake icefish Salanx ariakensis from three populations of continental coastlines and one island population in the north-western Pacific based on a partial sequence of the mitochondrial cytochrome b gene. The S. ariakensis showed high genetic diversity and strong genetic structure. Phylogenetic analysis showed a shallow gene tree with no clear phylogeographical structure. Contiguous range expansion and restricted gene flow were inferred to be main population events by nested-clade analysis. Significant genetic differentiations between populations could be attributable to negligible gene flow by coalescent analysis. High nucleotide diversity of each population was due to geographic mixing of heterogenous haplotypes during lowering sea levels of the Pleistocene. These findings indicate that cycles of geographic isolation and secondary contact happened in the Pleistocene glacial–interglacial cycles shaping genetic structure and population demography of S. ariakensis .  相似文献   

19.
Smith CI  Farrell BD 《Molecular ecology》2005,14(10):3049-3065
Although it has been suggested that Pleistocene climate changes drove population differentiation and speciation in many groups of organisms, population genetic evidence in support of this scenario has been ambiguous, and it has often been difficult to distinguish putative vicariance from simple isolation by distance. The sky island communities of the American Southwest present an ideal system in which to compare late Pleistocene range fragmentations documented by palaeoenvironmental studies with population genetic data from organisms within these communities. In order to elucidate the impact of Pleistocene climate fluctuations on these environments, biogeographic patterns in the flightless longhorn cactus beetle, Moneilema appressum were examined using mitochondrial DNA sequence data. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis, Mantel tests, and coalescent modelling were employed to examine alternative biogeographic scenarios, and to test the hypothesis that Pleistocene climate changes drove population differentiation in this species. The program mdiv was used to estimate migration and divergence times between populations, and to measure the statistical support for isolation over ongoing migration. These analyses showed significant geographic structure in genetic relationships, and implicated topography as a key determinant of isolation. However, although the coalescent analyses suggested that a history of past habitat fragmentation underlies the observed geographic patterns, the nested clade analysis indicated that the pattern was consistent with isolation by distance. Estimated divergence times indicated that range fragmentation in M. appressum is considerably older than the end of the most recent glacial, but coincided with earlier interglacial warming events and with documented range expansions in other, desert-dwelling species of Moneilema.  相似文献   

20.
Pleistocene glaciations have had a profound influence on the genetic structure of plant species throughout the Northern Hemisphere because of range contractions, fragmentations, and expansions. Phylogeographic studies have contributed to our knowledge of this influence in several geographic regions of North America, however, very few phylogeographic studies have examined plant species in the Sonoran, Mojave, and Peninsular deserts. In this study, we used sequence data from the chloroplast DNA psbA–trnH intergenic spacer to obtain information on phylogeographic patterns among 310 individuals from 21 populations of Encelia farinosa (“brittlebush”; Asteraceae) across its range. We applied several population and spatial genetic analyses that allowed us to interpret our data with respect to Pleistocene climate change. These analyses indicate that E. farinosa displays patterns of genetic differentiation and geographic structuring consistent with postglacial range expansion. Populations of E. farinosa are characterized by distinct haplotype lineages significantly associated with geography. Centers of genetic diversity for the species occur in southwestern Arizona, the plains of Sonora, and Baja California Sur, all of which are putative sites of glacial refugia as predicted by analyses of macrofossil and pollen data. Nested clade analysis suggests that genetic structure in E. farinosa has been affected by past fragmentation followed by range expansion. Range expansion in several locations is further supported by significant departures from neutrality for values of Fu’s FS and Tajima’s D, and mismatch analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号