首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Database scanning programs such as BLAST and FASTA are used nowadays by most biologists for the post-genomic processing of DNA or protein sequence information (in particular to retrieve the structure/function of uncharacterized proteins). Unfortunately, their results can be polluted by identical alignments (called redundancies) coming from the same protein or DNA sequences present in different entries of the database. This makes the efficient use of the listed alignments difficult. Pretreatment of databases has been proposed to suppress strictly identical entries. However, there still remain many identical alignments since redundancies may occur locally for entries corresponding to various fragments of the same sequence or for entries corresponding to very homologous sequences but differing at the level of a few residues such as ortholog proteins. In the present work, we show that redundant alignments can be indeed numerous even when working with a pretreated non-redundant data bank, going as high as 60% of the output results according to the query and the bank. Therefore the accuracy and the efficiency of the post-genomic work will be greatly increased if these redundancies are removed. To solve this up to now unaddressed problem, we have developed an algorithm that allows for the efficient and safe suppression of all the redundancies with no loss of information. This algorithm is based on various filtering steps that we describe here in the context of the Automat similarity search program, and such an algorithm should also be added to the other similarity search programs (BLAST, FASTA, etc...).  相似文献   

2.
3.
VISTA : visualizing global DNA sequence alignments of arbitrary length   总被引:31,自引:0,他引:31  
Summary: VISTA is a program for visualizing global DNA sequence alignments of arbitrary length. It has a clean output, allowing for easy identification of similarity, and is easily configurable, enabling the visualization of alignments of various lengths at different levels of resolution. It is currently available on the web, thus allowing for easy access by all researchers. Availability: VISTA server is available on the web at http://www-gsd.lbl.gov/vista. The source code is available upon request. Contact: vista@lbl.gov  相似文献   

4.
5.
SUMMARY: MuSeqBox is a program to parse BLAST output and store attributes of BLAST hits in tabular form. The user can apply a number of selection criteria to filter out hits with particular attributes. MuSeqBox provides a powerful annotation tool for large sets of query sequences that are simultaneously compared against a database with any of the standard stand-alone or network-client BLAST programs. We discuss such application to the problem of annotation and analysis of EST collections. AVAILABILITY: The program was written in standard C++ and is freely available to noncommercial users by request from the authors. The program is also available over the web at http://bioinformatics.iastate.edu/bioinformatics2go/mb/MuSeqBox.html.  相似文献   

6.
SUMMARY: BLAST2GENE is a program that allows a detailed analysis of genomic regions containing completely or partially duplicated genes. From a BLAST (or BL2SEQ) comparison of a protein or nucleotide query sequence with any genomic region of interest, BLAST2GENE processes all high scoring pairwise alignments (HSPs) and provides the disposition of all independent copies along the genomic fragment. The results are provided in text and PostScript formats to allow an automatic and visual evaluation of the respective region. AVAILABILITY: The program is available upon request from the authors. A web server of BLAST2GENE is maintained at http://www.bork.embl.de/blast2gene  相似文献   

7.
8.
Price MN  Dehal PS  Arkin AP 《PloS one》2008,3(10):e3589

Background

All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding.

Methodology/Principal Findings

We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database (“NR”), FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST) and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query.

Conclusions/Significance

FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.  相似文献   

9.
SRS (Sequence Retrieval System) is a widely used keyword search engine for querying biological databases. BLAST2 is the most widely used tool to query databases by sequence similarity search. These tools allow users to retrieve sequences by shared keyword or by shared similarity, with many public web servers available. However, with the increasingly large datasets available it is now quite common that a user is interested in some subset of homologous sequences but has no efficient way to restrict retrieval to that set. By allowing the user to control SRS from the BLAST output, BLAST2SRS (http://blast2srs.embl.de/) aims to meet this need. This server therefore combines the two ways to search sequence databases: similarity and keyword.  相似文献   

10.
Pfam contains multiple alignments and hidden Markov model based profiles (HMM-profiles) of complete protein domains. The definition of domain boundaries, family members and alignment is done semi-automatically based on expert knowledge, sequence similarity, other protein family databases and the ability of HMM-profiles to correctly identify and align the members. Release 2.0 of Pfam contains 527 manually verified families which are available for browsing and on-line searching via the World Wide Web in the UK at http://www.sanger.ac.uk/Pfam/ and in the US at http://genome.wustl. edu/Pfam/ Pfam 2.0 matches one or more domains in 50% of Swissprot-34 sequences, and 25% of a large sample of predicted proteins from the Caenorhabditis elegans genome.  相似文献   

11.
BLAST++ is a tool that is integrated with NCBI BLAST, allowing multiple, say K, queries to be searched against a database concurrently. The results obtained by BLAST++ are identical to that obtained by executing BLAST on each of the K queries, but BLAST++ completes the processing in a much shorter time. AVAILABILITY: http://xena1.ddns.comp.nus.edu.sg/~genesis/blast++ Supplementary information: http://xena1.ddns.comp.nus.edu.sg/~genesis/blast++  相似文献   

12.
BAliBASE is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The database contains high quality, manually constructed multiple sequence alignments together with detailed annotations. The alignments are all based on three-dimensional structural superpositions, with the exception of the transmembrane sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Here we describe version 2.0 of the database, which incorporates three new reference sets of alignments containing structural repeats, trans-membrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences. BAliBASE can be viewed at the web site http://www-igbmc.u-strasbg. fr/BioInfo/BAliBASE2/index.html or can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/BAliBASE2 /.  相似文献   

13.
Motivation

BLAST programs are very efficient in finding similarities for sequences. However for large datasets such as ESTs, manual extraction of the information from the batch BLAST output is needed. This can be time consuming, insufficient, and inaccurate. Therefore implementation of a parser application would be extremely useful in extracting information from BLAST outputs.

Results

We have developed a java application, Batch Blast Extractor, with a user friendly graphical interface to extract information from BLAST output. The application generates a tab delimited text file that can be easily imported into any statistical package such as Excel or SPSS for further analysis. For each BLAST hit, the program obtains and saves the essential features from the BLAST output file that would allow further analysis. The program was written in Java and therefore is OS independent. It works on both Windows and Linux OS with java 1.4 and higher. It is freely available from: http://mcbc.usm.edu/BatchBlastExtractor/

  相似文献   

14.
Motivation: The nucleotide sequencing process produces not onlythe sequence of nucleotides, but also associated quality values.Quality values provide valuable information, but are primarilyused only for trimming sequences and generally ignored in subsequentanalyses. Results: This article describes how the scoring schemes of standardalignment algorithms can be modified to take into account qualityvalues to produce improved alignments and statistically moreaccurate scores. A prototype implementation is also provided,and used to post-process a set of BLAST results. Quality-adjustedalignment is a natural extension of standard alignment methods,and can be implemented with only a small constant factor performancepenalty. The method can also be applied to related methods includingheuristic search algorithms like BLAST and FASTA. Availability: Software is available at http://malde.org/~ketil/qaa. Contact: ketil.malde{at}imr.no Supplementary information: Supplementary data are availableat Bioinformatics online. Associate Editor: Limsoon Wong  相似文献   

15.
MOTIVATION: BLAST programs are very efficient in finding similarities for sequences. However for large datasets such as ESTs, manual extraction of the information from the batch BLAST output is needed. This can be time consuming, insufficient, and inaccurate. Therefore implementation of a parser application would be extremely useful in extracting information from BLAST outputs. RESULTS: We have developed a java application, Batch Blast Extractor, with a user friendly graphical interface to extract information from BLAST output. The application generates a tab delimited text file that can be easily imported into any statistical package such as Excel or SPSS for further analysis. For each BLAST hit, the program obtains and saves the essential features from the BLAST output file that would allow further analysis. The program was written in Java and therefore is OS independent. It works on both Windows and Linux OS with java 1.4 and higher. It is freely available from: http://mcbc.usm.edu/BatchBlastExtractor/  相似文献   

16.
EXProt is a non-redundant protein database containing a selection of entries from genome annotation projects and public databases, aimed at including only proteins with an experimentally verified function. In EXProt release 2.0 we have collected entries from the Pseudomonas aeruginosa community annotation project (PseudoCAP), the Escherichia coli genome and proteome database (GenProtEC) and the translated coding sequences from the Prokaryotes division of EMBL nucleotide sequence database, which are described as having an experimentally verified function. Each entry in EXProt has a unique ID number and contains information about the species, amino acid sequence, functional annotation and, in most cases, links to references in MEDLINE/PubMed and to the entry in the original database. EXProt is indexed in SRS at CMBI (http://www.cmbi.kun.nl/srs/) and can be searched with BLAST and FASTA through the EXProt web page (http://www.cmbi.kun.nl/EXProt/).  相似文献   

17.
MOTIVATION: Word-matching algorithms such as BLAST are routinely used for sequence comparison. These algorithms typically use areas of matching words to seed alignments which are then used to assess the degree of sequence similarity. In this paper, we show that by formally separating the word-matching and sequence-alignment process, and using information about word frequencies to generate alignments and similarity scores, we can create a new sequence-comparison algorithm which is both fast and sensitive. The formal split between word searching and alignment allows users to select an appropriate alignment method without affecting the underlying similarity search. The algorithm has been used to develop software for identifying entries in DNA sequence databases which are contaminated with vector sequence. RESULTS: We present three algorithms, RAPID, PHAT and SPLAT, which together allow vector contaminations to be found and assessed extremely rapidly. RAPID is a word search algorithm which uses probabilities to modify the significance attached to different words; PHAT and SPLAT are alignment algorithms. An initial implementation has been shown to be approximately an order of magnitude faster than BLAST. The formal split between word searching and alignment not only offers considerable gains in performance, but also allows alignment generation to be viewed as a user interface problem, allowing the most useful output method to be selected without affecting the underlying similarity search. Receiver Operator Characteristic (ROC) analysis of an artificial test set allows the optimal score threshold for identifying vector contamination to be determined. ROC curves were also used to determine the optimum word size (nine) for finding vector contamination. An analysis of the entire expressed sequence tag (EST) subset of EMBL found a contamination rate of 0.27%. A more detailed analysis of the 50 000 ESTs in est10.dat (an EST subset of EMBL) finds an error rate of 0.86%, principally due to two large-scale projects. AVAILABILITY: A Web page for the software exists at http://bioinf.man.ac.uk/rapid, or it can be downloaded from ftp://ftp.bioinf.man.ac.uk/RAPID CONTACT: crispin@cs.man.ac.uk  相似文献   

18.
Exon discovery by genomic sequence alignment   总被引:5,自引:0,他引:5  
MOTIVATION: During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several gene-prediction methods have been proposed that work by comparing anonymous genomic sequences, for example from human and mouse. The main advantage of these methods is that they are based on simple and generally applicable measures of (local) sequence similarity; unlike standard gene-finding approaches they do not depend on species-specific training data or on the presence of cognate genes in data bases. As all comparative sequence-analysis methods, the new comparative gene-finding approaches critically rely on the quality of the underlying sequence alignments. RESULTS: Herein, we describe a new implementation of the sequence-alignment program DIALIGN that has been developed for alignment of large genomic sequences. We compare our method to the alignment programs PipMaker, WABA and BLAST and we show that local similarities identified by these programs are highly correlated to protein-coding regions. In our test runs, PipMaker was the most sensitive method while DIALIGN was most specific. AVAILABILITY: The program is downloadable from the DIALIGN home page at http://bibiserv.techfak.uni-bielefeld.de/dialign/.  相似文献   

19.
BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences   总被引:49,自引:0,他引:49  
'BLAST 2 Sequences', a new BLAST-based tool for aligning two protein or nucleotide sequences, is described. While the standard BLAST program is widely used to search for homologous sequences in nucleotide and protein databases, one often needs to compare only two sequences that are already known to be homologous, coming from related species or, e.g. different isolates of the same virus. In such cases searching the entire database would be unnecessarily time-consuming. 'BLAST 2 Sequences' utilizes the BLAST algorithm for pairwise DNA-DNA or protein-protein sequence comparison. A World Wide Web version of the program can be used interactively at the NCBI WWW site (http://www.ncbi.nlm.nih.gov/gorf/bl2.++ +html). The resulting alignments are presented in both graphical and text form. The variants of the program for PC (Windows), Mac and several UNIX-based platforms can be downloaded from the NCBI FTP site (ftp://ncbi.nlm.nih.gov).  相似文献   

20.
A strategy for finding regions of similarity in complete genome sequences   总被引:3,自引:2,他引:1  
MOTIVATION: Complete genomic sequences will become available in the future. New methods to deal with very large sequences (sizes beyond 100 kb) efficiently are required. One of the main aims of such work is to increase our understanding of genome organization and evolution. This requires studies of the locations of regions of similarity. RESULTS: We present here a new tool, ASSIRC ('Accelerated Search for SImilarity Regions in Chromosomes'), for finding regions of similarity in genomic sequences. The method involves three steps: (i) identification of short exact chains of fixed size, called 'seeds', common to both sequences, using hashing functions; (ii) extension of these seeds into putative regions of similarity by a 'random walk' procedure; (iii) final selection of regions of similarity by assessing alignments of the putative sequences. We used simulations to estimate the proportion of regions of similarity not detected for particular region sizes, base identity proportions and seed sizes. This approach can be tailored to the user's specifications. We looked for regions of similarity between two yeast chromosomes (V and IX). The efficiency of the approach was compared to those of conventional programs BLAST and FASTA, by assessing CPU time required and the regions of similarity found for the same data set. AVAILABILITY: Source programs are freely available at the following address: ftp://ftp.biologie.ens. fr/pub/molbio/assirc.tar.gz CONTACT: vincens@biologie.ens.fr, hazout@urbb.jussieu.fr   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号