首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   22篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   8篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   6篇
  2007年   2篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   10篇
  2001年   9篇
  2000年   8篇
  1999年   9篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1971年   2篇
  1862年   1篇
  1861年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
1.
The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the βγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism.  相似文献   
2.
3.
To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA (“Semantic Extraction using a Neural Network Architecture”), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, cooccurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches.  相似文献   
4.
5.
KEGG spider is a web-based tool for interpretation of experimentally derived gene lists in order to gain understanding of metabolism variations at a genomic level. KEGG spider implements a 'pathway-free' framework that overcomes a major bottleneck of enrichment analyses: it provides global models uniting genes from different metabolic pathways. Analyzing a number of experimentally derived gene lists, we demonstrate that KEGG spider provides deeper insights into metabolism variations in comparison to existing methods.  相似文献   
6.
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of systemic sclerosis (SSc). Vascular alterations and reduced capillary density decrease blood flow and impair tissue oxygenation in SSc. Oxygen supply is further reduced by accumulation of extracellular matrix (ECM), which increases diffusion distances from blood vessels to cells. Therefore, severe hypoxia is a characteristic feature of SSc and might contribute directly to the progression of the disease. Hypoxia stimulates the production of ECM proteins by SSc fibroblasts in a transforming growth factor-β-dependent manner. The induction of ECM proteins by hypoxia is mediated via hypoxia-inducible factor-1α-dependent and -independent pathways. Hypoxia may also aggravate vascular disease in SSc by perturbing vascular endothelial growth factor (VEGF) receptor signalling. Hypoxia is a potent inducer of VEGF and may cause chronic VEGF over-expression in SSc. Uncontrolled over-expression of VEGF has been shown to have deleterious effects on angiogenesis because it leads to the formation of chaotic vessels with decreased blood flow. Altogether, hypoxia might play a central role in pathogenesis of SSc by augmenting vascular disease and tissue fibrosis.  相似文献   
7.
H J Merker  M Pospisil  P Mewes 《Teratology》1975,11(2):199-217
On day 12 of pregnancy Wistar rats were each given a single ip injection of 5, 8, 16, 25, or 50 mg/kg 6-mercaptopurine. The embryos were removed 1, 2, 3, 5, 6, 10, 24, 48, or 72 h after injection or on day 20 and studied by light and electron microscopy. After 25 or 50 mg/kg all embryos showed no mineralization in the lower extremities. By electron microscopy condensation, shrinking, and fragmentation of cells in the limb bud blastema could be seen after 5 h. The fragments were phagocytosed and broken down by neighboring cells or remained in the extracellular space. After 25 or 50 mg/kg the damage was so extensive that the number of undamaged cells and of cells transforming into phagocytes was not sufficient to remove the debris or to compensate for the defect by mitotic activity. Epithelial cells, nerves, and blood vessels, show no morphological signs of damage. The "critical period" was the time cartilage just starts developing, i.e., when the blastema begins to differentiate.  相似文献   
8.
The influence of estradiol-17beta (E(2)) on vitellogenesis is well documented for a number of oviparous craniates. We have examined the role that estradiol-17beta plays in the induction and regulation of vitellogenin synthesis in the maturing European river lamprey, Lampetra fluviatilis. In both females and males the estradiol-17beta concentrations in the plasma reached comparable maximum values in March, only a few weeks before spawning. Throughout the spawning run, the vitellogenin titer in the blood of females remains rather constant while the ovary volume increases. In contrast, we never found circulating VTG in untreated male lampreys. The synthesis and secretion of the yolk precursor molecule can be induced in males, however, by high doses of estradiol injected into the coelom. Lamprey vitellogenin was isolated from the blood of maturing females as well as from hormone-stimulated males and identified by its immunological and electrophoretic properties. In the blood plasma of both maturing female and estradiol-treated male lampreys it always appears simultaneously in two different molecular forms: a vitellogenin monomer with an apparent molecular weight of 310-330kDa and a dimer. After SDS treatment, vitellogenin is represented as a 212-kDa polypeptide.  相似文献   
9.
10.
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02 µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号