首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.  相似文献   

3.
In the ascidian embryo, a fibroblast growth factor (FGF)-like signal from presumptive endoderm blastomeres between the 32-cell and early 64-cell stages induces the formation of notochord and mesenchyme cells. However, it has not been known whether endogenous FGF signaling is involved in the process. Here it is shown that 64-cell embryos exhibit a marked increase in endogenous extracellular signal-regulated kinase (ERK/MAPK) activity. The increase in ERK activity was reduced by treatment with an FGF receptor 1 inhibitor, SU5402, and a MEK (ERK kinase/MAPKK) inhibitor, U0126. Both drugs blocked the formation of notochord and mesenchyme when embryos were treated at the 32-cell stage, but not at the 2- or 110-cell stages. The dominant-negative form of Ras also suppressed notochord and mesenchyme formation. Both inhibitors suppressed induction by exogenous basic FGF. These results suggest that the FGF signaling cascade is indeed necessary for the formation of notochord and mesenchyme cells during ascidian embryogenesis. It is also shown that FGF signaling is required for formation of the secondary notochord, secondary muscle and neural tissues, and at least ERK activity is necessary for the formation of trunk lateral cells and posterior endoderm. Therefore, FGF and MEK signaling are required for the formation of various tissues in the ascidian embryo.  相似文献   

4.
Two axial structures, a neural tube and a notochord, are key structures in the chordate body plan and in understanding the origin of chordates. To expand our knowledge on mechanisms of development of the neural tube in lower chordates, we have undertaken isolation and characterization of HrzicN, a new member of the Zic family gene of the ascidian, Halocynthia roretzi. HrzicN expression was detected by whole-mount in situ hybridization in all neural tube precursors, all notochord precursors, anterior mesenchyme precursors and a part of the primary muscle precursors. Expression of HrzicN in a- and b-line neural tube precursors was detected from early gastrula stage to the neural plate stage, while expression in other lineages was observed between the 32-cell and the 110-cell stages. HrzicN function was investigated by disturbing translation using a morpholino antisense oligonucleotide. Embryos injected with HrzicN morpholino ('HrzicN knockdown embryos') exhibited failure of neurulation and tail elongation, and developed into larvae without a neural tube and notochord. Analysis of neural marker gene expression in HrzicN knockdown embryos revealed that HrzicN plays critical roles in distinct steps of neural tube formation in the a-line- and A-line precursors. In particular HrzicN is required for early specification of the neural tube fate in A-line precursors. Involvement of HrzicN in the neural tube development was also suggested by an overexpression experiment. However, analysis of mesodermal marker gene expression in HrzicN knockdown embryos revealed unexpected roles of this gene in the development of mesodermal tissues. HrzicN knockdown led to loss of HrBra (Halocynthia roretzi Brachyury) expression in all of the notochord precursors, which may be the cause for notochord deficiency. Hrsna (Halocynthia roretzi snail) expression was also lost from all the notochord and anterior mesenchyme precurosrs. By contrast, expression of Hrsna and the actin gene was unchanged in the primary muscle precursors. These results suggest that HrzicN is responsible for specification of the notochord and anterior mesenchyme. Finally, regulation of HrzicN expression by FGF-like signaling was investigated, which has been shown to be involved in induction of the a- and b-line neural tube, the notochord and the mesenchyme cells in Halocynthia embryos. Using an inhibitor of FGF-like signaling, we showed that HrzicN expression in the a- and b-line neural tube, but not in the A-line lineage and mesodermal lineage, depends on FGF-like signaling. Based on these data, we discussed roles of HrzicN as a key gene in the development of the neural tube and the notochord.  相似文献   

5.
Notochord cells in ascidian embryos are formed by the inducing action of cells of presumptive endoderm, as well as neighboring presumptive notochord, at the 32-cell stage. Studies of the timing of induction using recombinations of isolated blastomeres have suggested that notochord induction must be initiated before the decompaction of blastomeres at the 32-cell stage and is completed by the 64-cell stage. However, it is not yet clear how the duration of notochord induction is strictly limited. In the present paper, the aim was to determine in detail when the presumptive notochord blastomeres lost their competence to respond, and when the presumptive endoderm blastomeres produced inducing signals for the notochord. Presumptive notochord blastomeres and presumptive endoderm blastomeres were isolated from early 32-cell embryos, and were heterochronously recombined at various stages ranging from the early 32-cell stage to the 64-cell stage. Presumptive notochord blastomeres could respond to inductive signals at the early 32-cell stage, and started to lose their responsiveness at the decompaction stage. By contrast, the presumptive endoderm blastomeres persisted in their inducing capacity even at the 64-cell stage. These observations suggest that the loss of competence in presumptive notochord blastomeres limits the duration of notochord induction in intact ascidian embryos.  相似文献   

6.
An extracellular signaling molecule acts on several types of cells, evoking characteristic and different responses depending on intrinsic factors in the signal-receiving cells. In ascidian embryos, notochord and mesenchyme are induced in the anterior and posterior margins, respectively, of the vegetal hemisphere by the same FGF signal emanating from endoderm precursors. The difference in the responsiveness depends on the inheritance of the posterior-vegetal egg cytoplasm. We show that macho-1, first identified as a localized muscle determinant, is also required for mesenchyme induction, and that it plays a role in making the cell response differ between notochord and mesenchyme induction. A zygotic event involving snail expression downstream of maternal macho-1 mediates the suppression of notochord induction in mesenchyme precursors.  相似文献   

7.
Specification of germ layers is a crucial event in early embryogenesis. In embryos of the ascidian, Halocynthia roretzi, endoderm cells originate from two distinct lineages in the vegetal hemisphere. Cell dissociation experiments suggest that cell interactions are required for posterior endoderm formation, which has hitherto been thought to be solely regulated by localized egg cytoplasmic factors. Without cell interaction, every descendant of posterior-vegetal blastomeres, including endoderm precursors, assumed muscle fate. Cell interactions are required for suppression of muscle fate and thereby promote endoderm differentiation in the posterior endoderm precursors. The cell interactions take place at the 16- to 32-cell stage. Inhibition of cell signaling by FGF receptor and MEK inhibitor also supported the requirement of cell interactions. Consistently, FGF was a potent signaling molecule, whose signaling is transduced by MEK-MAPK. By contrast, such cell interactions are not required for formation of the anterior endoderm. Our results suggest that another redundant signaling molecule is also involved in the posterior endoderm formation, which is likely to be mediated by BMP. Suppression of the function of macho-1, a muscle determinant in ascidian eggs, by antisense oligonucleotide was enough to allow autonomous endoderm specification. Therefore, the cell interactions induce endoderm formation by suppressing the function of macho-1, which is to promote muscle fate. These findings suggest the presence of novel mechanisms that suppress functions of inappropriately distributed maternal determinants via cell interactions after embryogenesis starts. Such cell interactions would restrict the regions where maternal determinants work, and play a key role in marking precise boundaries between precursor cells of different tissue types.  相似文献   

8.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to address this issue directly. Therefore the present study examined the developmental role of HNF-3 in ascidian notochord differentiation. When embryos were injected with a low dose of HNF-3 mRNA, their tails were shortened and when embryos were injected with a high dose of HNF-3 mRNA, which was enough to inhibit differentiation of epidermis and muscle, no obvious ectopic differentiation of endoderm or notochord cells was observed. However, co-injection of HNF-3 mRNA along with Brachyury mRNA resulted in ectopic differentiation of notochord cells in the animal hemisphere, suggesting that HNF-3 acts synergistically with Brachyury in ascidian notochord differentiation. Notochord differentiation of the A-line precursor cells depends on inducing signal(s) from endodermal cells, which can be mimicked by bFGF treatment. Treatment of notochord precursor cells isolated from the 32-cell stage embryoswith bFGF resulted in upregulation of both the HNF-3 and Brachyury genes.  相似文献   

9.
In the ascidian embryo, the nerve cord and notochord of the tail of tadpole larvae originate from the precursor blastomeres for both tissues in the 32-cell-stage embryo. Each fate is separated into two daughter blastomeres at the next cleavage. We have examined mechanisms that are responsible for nerve cord and notochord specification through experiments involving blastomere isolation, cell dissociation, and treatment with basic fibroblast growth factor (bFGF) and inhibitors for the mitogen-activated protein kinase (MAPK) cascade. It has been shown that inductive cell interaction at the 32-cell stage is required for notochord formation. Our results show that the nerve cord fate is determined autonomously without any cell interaction. Presumptive notochord blastomeres also assume a nerve cord fate when they are isolated before induction is completed. By contrast, not only presumptive notochord blastomeres but also presumptive nerve cord blastomeres forsake their default nerve cord fate and choose the notochord fate when they are treated with bFGF. When the FGF-Ras-MAPK signaling cascade is inhibited, both blastomeres choose the default nerve cord pathway, supporting the results of blastomere isolation. Thus, binary choice of alternative fates and asymmetric division are involved in this nerve cord/notochord fate determination system, mediated by FGF signaling.  相似文献   

10.
The notochord is one of the characteristic features of the phylum Chordata. The vertebrateBrachyurygene is known to be essential for the terminal differentiation of chordamesoderm into notochord. In the ascidian, which belongs to the subphylum Urochordata, differentiation of notochord cells is induced at the late phase of the 32-cell stage through cellular interaction with adjacent endoderm cells as well as neighboring notochord cells. The ascidianBrachyurygene (As-T) is expressed exclusively in the notochord-lineage blastomeres, and the timing of gene expression at the 64-cell stage precisely coincides with that of the developmental fate restriction of the blastomeres. In addition, experimental studies have demonstrated a close relationship between the inductive events andAs-Texpression. In the present study, we show that overexpression ofAs-Tby microinjection of the synthesizedAs-TRNA results in the occurrence, without the induction, of notochord-specific features in the A-line presumptive notochord blastomeres. We also show that overexpression ofAs-TRNA leads to ectopic expression of notochord-specific features in non-notochord lineages, including those of spinal cord and endoderm. These results strongly suggest that the developmental role of theBrachyuryis conserved throughout chordates in notochord formation.  相似文献   

11.
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.  相似文献   

12.
Using 32-cell Xenopus embryos series of extirpation experiments were performed in order to clarify whether or not the dorsal equatorial blastomeres were committed to differentiate to the axial mesodermal structures. First, these blastomeres designated as B1, B1', C1 and C1' and C1' were labeled using the technique of HRP injection or vital staining. They produce descendants which become localized in the organizer region of the early gastrula. These cells form the prechordal plate, notochord, somites, pharyngeal endoderm and neural tube at early neurula stage. The results of extirpation of the medial two or four of these blastomeres show that the entire head lacks or the tissues and organs of the head greatly reduce. This indicates that already at the 32-cell stage they have been committed to autonomously differentiate to form the axial mesodermal tissues of the head and that their roles in the head formation can neither be replaced nor complemented by any other blastomeres surrounding them. It is also shown that the vegetal yolk cells do not seem to play essential roles for development of the axial organs of the head. On the basis of the present results a view of establishment of the organizer of Xenopus eggs is proposed.  相似文献   

13.
For testing the autonomic differentiation abilities of dorsal equatorial blastomeres of 32-cell Xenopus embryos, their roles in head formation in normal development and the organizer-inducing capabilities of the dorsal-most vegetal cells, interspecific transplantations were made using Xenopus borealis and X. laevis . When transplanted into the ventral region, the dorsal blastomeres produced descendants that differentiated into prechordal mesoderm, notochord and somites in the recipient according to their fates. They induced formation of the secondary embryo with the head and tail. The prechordal mesoderm and notochord in the secondary structure consisted of progeny of the graft, whereas somites and the CNS were chimeric and the pronephros was composed of host cells. Replacement of the dorsal blastomeres by ventral equatorial cells caused complete arrest of head formation in the recipient. Without exception, the notochord was completely absent or very thin. These results confirm the assumption that the presumptive head organizer in the Xenopus embryo is localized in the dorsal equatorial region at the 32-cell stage and comes into existence not under the inductive influence of the dorsal-most vegetal cells, but owing to allocation of morphogenetic determinants residing in the fertilized egg to the dorsal equatorial blastomeres of the 32-cell embryo.  相似文献   

14.
15.
16.
The formation of the amphibian organizer is evidenced by the ability of cells of the dorsal marginal zone (DMZ) to self-differentiate to form notochord and to induce the formation of other axial structures from neighboring regions of the embryo. We have attempted to determine when these abilities are acquired in the urodele, Ambystoma mexicanum (axolotl), and in the anuran, Xenopus laevis, by removing the mesodermalizing influence of the vegetal hemisphere at different stages of development and culturing the animal hemisphere isolate. This was possible, even at the 32 and 64-cell stage, through the use of embryos with rare cleavage patterns. Cultured isolates were analyzed for morphological differentiation of mesodermal and neural structures, and for biochemical differentiation of the tissue-specific enzyme, acetylcholinesterase (AChE). Large amounts of mesodermal and neural structures, and normal expression of AChE were found in isolates made as early as the 32-cell stage in both species. Only a small increase in the percentage of isolates developing mesoderm was detected when isolations were made at later cleavage or blastula stages. The amount of mesoderm formed did not depend on the stage of isolation. Mesoderm differentiation was usually limited to the notocord and muscle. The isolates rarely formed pronephros, mesothelium, or mesenchyme, derivatives of ventral mesoderm, during normal development. The results indicate that the marginal zone of the cleavage-stage embryo contains all of the information needed for the formation of the organizer. The formation of dorsal mesoderm does not require subsequent interaction with the cells of the vegetal hemisphere, although the presence of those cells is likely to play a role in normal pattern formation.  相似文献   

17.
Cells in the dorsal marginal zone of the amphibian embryo acquire the potential for mesoderm formation during the first few hours following fertilization. An examination of those early cell interactions may therefore provide insight on the mechanisms important for organization of axial structures. The formation of mesoderm (notochord, somites, and pronephros) was studied by combining blastomeres from the animal pole region of Xenopus embryos (32- to 512-cell stages) with blastomeres from different regions of the vegetal hemisphere. The frequency of notochord and somite development was similar in combinations made with dorsal or ventral blastomeres, or with both. Our results show that during early cleavage stages the ventral half of the vegetal hemisphere has the potential to organize axial structures, a property previously believed to be limited to the dorsal region.  相似文献   

18.
Starfish blastomeres are reported to be totipotent up to the 8-cell stage. We reinvestigated the development of blastomeres of 8-cell stage embryos with a regular cubic shape consisting of two tiers of 4 blastomeres. On dissociation of the embryo by disrupting the fertilization membrane at the 8-cell stage, each of the 4 blastomeres of the vegetal hemisphere gave rise to an embryo that gastrulated, whereas blastomeres from the animal hemisphere did not. By injection of a cell lineage tracer into blastomeres of 8-cell stage embryos, we found that only those of the vegetal hemisphere formed cells constituting the archenteron. Next, we compressed 4-cell stage embryos along the animal-vegetal axis so that all the blastomeres in the 8-cell stage were in a single layer. When these 8 blastomeres were then dissociated, an average of 7 of them developed into gastrulae. By cell lineage analysis, all the blastomeres in single-layered embryos at the 8-cell stage were shown to have the capacity to form cells constituting an archenteron. Taken together, these findings indicate that the fate to form the archenteron is specified by a cytoplasmic factor(s) localized at the vegetal hemisphere, and that isolated blastomeres that have inherited this factor develop into gastrulae.  相似文献   

19.
We have investigated the role of the bone morphogenetic protein (BMP) pathway during neural tissue formation in the ascidian embryo. The orthologue of the BMP antagonist, chordin, was isolated from the ascidian Halocynthia roretzi. While both the expression pattern and the phenotype observed by overexpressing chordin or BMPb (the dpp-subclass BMP) do not suggest a role for these factors in neural induction, BMP/CHORDIN antagonism was found to affect neural patterning. Overexpression of BMPb induced ectopic sensory pigment cells in the brain lineages that do not normally form pigment cells and suppressed pressure organ formation within the brain. Reciprocally, overexpressing chordin suppressed pigment cell formation and induced ectopic pressure organ. We show that pigment cell formation occurs in three steps. (1) During cleavage stages ectodermal cells are neuralized by a vegetal signal that can be substituted by bFGF. (2) At the early gastrula stage, BMPb secreted from the lateral nerve cord blastomeres induces those neuralized blastomeres in close proximity to adopt a pigment cell fate. (3) At the tailbud stage, among these pigment cell precursors, BMPb induces the differentiation of specifically the anterior type of pigment cell, the otolith; while posteriorly, CHORDIN suppresses BMP activity and allows ocellus differentiation.  相似文献   

20.
The notochord is one of the defining features of chordates. The ascidian notochord is a rod like structure consisting of a single row of 40 cells. The anterior 32 ;primary' notochord cells arise from the A-line (anterior vegetal) blastomeres of the eight-cell stage embryo, whereas the posterior 8 ;secondary' notochord cells arise from the B-line (posterior vegetal) blastomeres of the eight-cell stage embryo. Specification of notochord precursors within these two lineages occurs in a spatially and temporally distinct manner. We show that specification of the secondary but not the primary notochord in Ciona intestinalis requires a relay mechanism involving two signalling pathways. First, we show evidence that acquisition of secondary notochord fate is dependent upon lateral Nodal signalling sources, situated in the adjacent b-line animal cells. Expression of the notochord specific gene Ci-Brachyury in the secondary notochord precursor was downregulated following selective inhibition of Nodal signal reception in B-line derivatives and also, strikingly, following selective inhibition of Nodal signal reception in A-line cell derivatives. Within the A-line, Nodal signals are required for localised expression of Delta2, which encodes a divergent form of Delta ligand. Using four distinct reagents to inhibit Delta2/Notch signals, we showed that Delta2 signalling from A-line cells, which activates the Notch/Su(H) pathway in adjacent B-line cells, is required for specification of the secondary notochord precursor. We propose a model whereby laterally produced Nodal acts to specify the secondary notochord precursor both directly in the B-line cells and via Delta2 induction in adjacent A-line cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号