首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In order to characterize more fully the mechanism by which casein kinase II is regulated in mammalian cells, the effect of epidermal growth factor (EGF) on the activity of the kinase in human A-431 carcinoma cells was examined. Treatment of cells with EGF prior to lysis consistently resulted in a transient 4-fold increase in the activity of cytosolic casein kinase II. Activity rose sharply between 20 and 30 min, peaked at approximately 50 min, and returned to basal levels by approximately 120 min. Similar results were obtained using the casein kinase II specific peptide substrate, Arg-Arg-Arg-Glu-Glu-Glu-Thr-Glu-Glu-Glu, or DNA topoisomerase II (which is specifically modified by the kinase in vivo and serves as a high affinity substrate in vitro) as the phosphate acceptor in assays. Identification of casein kinase II as the stimulated activity was confirmed by partial proteolytic mapping and phosphoamino acid analysis of modified topoisomerase II, by inhibition at nanomolar levels of heparin or micromolar levels of nonradioactive GTP, and by the ability to employ radioactive GTP as a direct phosphate donor. The EGF stimulation of casein kinase II was dependent on the availability of intracellular (but not extracellular) calcium. In addition, hormonal action was modulated by calcium/phospholipid-dependent protein kinase (protein kinase C). Casein kinase II stimulation did not require an increase in the concentration of the kinase, protein synthesis, the continual presence of a small effector molecule, or a direct interaction with the EGF receptor/tyrosine kinase. In contrast, hormonal activation of the kinase was dependent on the phosphorylation of casein kinase II or a terminal stimulatory factor.  相似文献   

2.
The phosphorylation of DNA topoisomerase II in Drosophila Kc tissue culture cells was characterized by in vivo labeling studies and in vitro studies that examined the modification of exogenous enzyme in total homogenates of these embryonic cells. Several lines of evidence identified casein kinase II as the kinase primarily responsible for phosphorylating DNA topoisomerase II. First, the only amino acyl residue modified in the enzyme was serine. Second, partial proteolytic maps of topoisomerase II which had been labeled with [32P]phosphate by Drosophila cells in vivo, by cell homogenates in vitro, or by purified casein kinase II were indistinguishable from one another. Third, phosphorylation in cell homogenates was inhibited by micrograms/ml concentrations of heparin, micromolar concentrations of nonradioactive GTP, or anti-Drosophila casein kinase II antiserum. Fourth, cell homogenates were able to employ [gamma-32P]GTP as a phosphate donor nearly as well as [gamma-32P]ATP. Although topoisomerase II was phosphorylated in homogenates under conditions that specifically stimulate protein kinase C, calcium/calmodulin-dependent protein kinase, or cAMP-dependent protein kinase, modification was always sensitive to anti-casein kinase II antiserum or heparin. Thus, under a variety of conditions, topoisomerase II appears to be phosphorylated primarily by casein kinase II in the Drosophila embryonic Kc cell system.  相似文献   

3.
The gene encoding topoisomerase II in yeast is unique and essential, required for both mitotic and meiotic proliferation. The use of temperature-sensitive mutants in topoisomerase II have demonstrated roles in the relaxation of tortional stress, reduction of recombination rates, and in the separation of sister chromatids after replication. In vertebrate cells, topoisomerase II was shown to be the most abundant component of the metaphase chromosomal scaffold, and has been shown to play a role in chromosome condensationin vitro. The cell cycle control of chromosome condensation may well require phosphorylation of topoisomerase II, since the enzyme is more highly phosphorylated in metaphase than in G1. Recent studies have identified casein kinase II as the major enzyme phosphorylating topoisomerase II in intact yeast cells. The target sites of CKII are exclusively in the C-terminal 400 amino acids of topoisomerase II, the region that is most divergent among the eukaryotic type II enzymes and which is absent in the bacterial gyrase homologues.Abbreviations topoII topoisomerase II - CKII Casein Kinase II - SV40 Simian Virus 40  相似文献   

4.
We present a novel assay for the study of protein-protein interactions involving DNA topoisomerase II. Under various conditions of incubation we observe that topoisomerase II forms complexes at least tetrameric in size, which can be sedimented by centrifugation through glycerol. The multimers are enzymatically active and can be visualized by electron microscopy. Dephosphorylation of topoisomerase II inhibits its multimerization, which can be restored at least partially by rephosphorylation of multiple sites within its 200 C-terminal amino acids by casein kinase II. Truncation of topoisomerase II just upstream of the major phosphoacceptor sites reduces its aggregation, rendering the truncated enzyme insensitive to either kinase treatments or phosphatase treatments. This is consistent with a model in which interactions involving the phosphorylated C-terminal domain of topoisomerase II aid either in chromosome segregation or in chromosome condensation.  相似文献   

5.
6.
In human epidermal carcinoma A431 cells, the beta subunit of casein kinase II is phosphorylated at an autophosphorylation site and at serine 209 which can be phosphorylated in vitro by p34cdc2 (Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991) J. Biol. Chem. 266, 20380-20389). Given the importance of p34cdc2 in the regulation of cell cycle events, we were interested in examining the phosphorylation of casein kinase II during different stages of the cell cycle. In this study it is demonstrated that the extent of phosphorylation of serine 209 in the beta subunit is significantly increased relative to phosphorylation of the autophosphorylation site when chicken bursal lymphoma BK3A cells are arrested at mitosis by nocodazole treatment. This result suggests that serine 209 is a likely physiological target for p34cdc2. In addition, the alpha subunit of casein kinase II also undergoes dramatic phosphorylation with an associated alteration in its electrophoretic mobility when BK3A cells or human Jurkat cells are arrested with nocodazole. Phosphopeptide mapping studies indicate that p34cdc2 can phosphorylate in vitro the same peptides on the alpha subunit that are phosphorylated in cells arrested at mitosis. These phosphorylation sites were localized to serine and threonine residues in the carboxyl-terminal domain of alpha. Taken together, the results of this study indicate that casein kinase II is a probable physiological substrate for p34cdc2 and suggest that its functional properties could be affected in a cell cycle-dependent manner.  相似文献   

7.
Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II–depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II–depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule–kinetochore attachments by allowing proper activation of Aurora B kinase.  相似文献   

8.
E Durban  M Goodenough  J Mills    H Busch 《The EMBO journal》1985,4(11):2921-2926
Changes in phosphorylation modulate the activity of topoisomerase I in vitro. Specifically, enzymatic activity is stimulated by phosphorylation with a purified protein kinase (casein kinase type II). The purpose of this study was to compare the sites that are phosphorylated in vitro by casein kinase type II with the site(s) phosphorylated in vivo in rapidly growing Novikoff hepatoma cells. Topoisomerase I labeled in vitro was characterized by three major tryptic phosphopeptides (I-III). Separation of these peptides by a C18-reverse phase h.p.l.c. column resulted in their elution at fractions 18 (I), 27 (II) and 44 (III) with 17%, 22.5% and 33% acetonitrile, respectively. In contrast, only one major phosphopeptide was identified by h.p.l.c. in topoisomerase I labeled in vivo. This phosphopeptide eluted at fraction 18 corresponding to the elution properties of phosphopeptide I labeled in vitro. It also co-migrated with tryptic phosphopeptide I when subjected to high-voltage electrophoresis on thin-layer cellulose plates. Preliminary experiments suggest that phosphorylation occurs at a serine residue six amino acids from the N-terminus of the peptide. These data indicate that topoisomerase I is phosphorylated in vivo and in vitro within the same tryptic peptide and suggest that topoisomerase I is phosphorylated in vivo by casein kinase II.  相似文献   

9.
10.
11.
12.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

13.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

14.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

15.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

16.
Nuclei from K21 murine mastocytoma cells do not form topoisomerase II-DNA adducts in response to amsacrine in the absence of a cytoplasmic factor tentatively identified as a type of casein kinase (Darkin, S.J. and Ralph, R.K. (1991) Biochim. Biophys. Acta 1088, 285-291). The stimulatory activity was present in extracts from cells grown in horse serum but not in calf serum. Activity was lost following growth arrest by serum deprivation. In contrast, topoisomerase II activity in isolated nuclei did not decline during growth arrest. These results suggest that the resistance of some non-cycling tumour cells to anti-cancer drugs may result from decreased activation of topoisomerase II.  相似文献   

17.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

18.
DNA topoisomerase II is required at the time of mitosis in yeast   总被引:116,自引:0,他引:116  
C Holm  T Goto  J C Wang  D Botstein 《Cell》1985,41(2):553-563
We have constructed five new temperature-sensitive DNA topoisomerase II mutations and have analyzed their physiological consequences in yeast. Several lines of evidence suggest that the activity of topoisomerase II is required specifically at the time of miosis. First, top2 mutations cause dramatic lethality at the restrictive temperature, but only if the mutant cells are actively traversing the cell cycle. Second, temperature-shift experiments with synchronized cultures show that the onset of inviability coincides with the time of mitosis. Third, fluorescence microscopy reveals that the normal progression of mitosis is disturbed in mutant cells at the restrictive temperature. Finally, inviability at the restrictive temperature is prevented by nocodazole, an inhibitor of tubulin polymerization that prevents formation of the mitotic spindle. These results are consistent with the hypothesis that the essential function of topoisomerase II is to allow the separation of intertwined chromosomal DNA molecules during mitosis.  相似文献   

19.
Topoisomerases alter DNA topology and are vital for the maintenance of genomic integrity. Topoisomerases I and II are also targets for widely used antitumor agents. We demonstrated previously that in the human leukemia cell line, HL-60, resistance to topoisomerase (topo) II-targeting drugs such as etoposide is associated with site-specific hypophosphorylation of topo II alpha. This effect can be mimicked in sensitive cells treated with the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Here we identify Ser-1106 as a major phosphorylation site in the catalytic domain of topo II alpha. This site lies within the consensus sequence for the acidotrophic kinases, casein kinase I and casein kinase II. Mutation of serine 1106 to alanine (S1106A) abrogates phosphorylation of phosphopeptides that were found to be hypophosphorylated in resistant HL-60 cells or sensitive cells treated with BAPTA-AM. Purified topo II alpha containing a S1106A substitution is 4-fold less active than wild type topo II alpha in decatenating kinetoplast DNA and also exhibits a 2-4-fold decrease in the level of etoposide-stabilized DNA cleavable complex formation. Saccharomyces cerevisiae (JN394t2-4) cells expressing S1106A mutant topo II alpha protein are more resistant to the cytotoxic effects of etoposide or amsacrine. These results demonstrate that Ca(2+)-regulated phosphorylation of Ser-1106 in the catalytic domain of topo II alpha modulates the enzymatic activity of this protein and sensitivity to topo II-targeting drugs.  相似文献   

20.
The hypothesis that DNA topoisomerase II facilitates the separation of replicated sister chromatids was tested by examining the consequences of chromosome segregation in the absence of topoisomerase II activity. We observed a substantial elevation in the rate of nondisjunction in top2/top2 cells incubated at the restrictive temperature for one generation time. In contrast, only a minor increase in the amount of chromosome breakage was observed by either physical or genetic assays. These results suggest that aneuploidy is a major cause of the nonviability observed when top2 cells undergo mitosis at the restrictive temperature. In related experiments, we determined that topoisomerase II must act specifically during mitosis. This latter observation is consistent with the hypothesis that the mitotic spindle is necessary to allow topoisomerase II to complete the untangling of sister chromatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号