首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the characterisation of the Azorhizobium caulinodans amtB gene, the deduced protein sequence of which shares similarity to those of several ammonium transporters. amtB is located downstream from glnK, a glnB-like gene. It is cotranscribed with glnK from an NtrC- and σ54-dependent promoter. glnK and amtB insertion mutant strains have been isolated. Methylammonium uptake was assayed in these strains and in other mutant strains in which the regulation of nitrogen metabolism is impaired. Our data suggest that the AmtB protein is an ammonium transporter, which is mainly regulated by NtrC in response to nitrogen availability.  相似文献   

2.
3.
This work reports the characterisation of the Azorhizobium caulinodans amtB gene, the deduced protein sequence of which shares similarity to those of several ammonium transporters. amtB is located downstream from glnK, a glnB-like gene. It is cotranscribed with glnK from an NtrC- and σ54-dependent promoter. glnK and amtB insertion mutant strains have been isolated. Methylammonium uptake was assayed in these strains and in other mutant strains in which the regulation of nitrogen metabolism is impaired. Our data suggest that the AmtB protein is an ammonium transporter, which is mainly regulated by NtrC in response to nitrogen availability. Received: 2 February 1998 / Accepted: 20 March 1998  相似文献   

4.
5.
Herbaspirillum seropedicae is an endophytic nitrogen-fixing bacterium that colonizes economically important grasses. In this organism, the amtB gene is co-transcribed with two other genes: glnK that codes for a PII-like protein and orf1 that codes for a probable periplasmatic protein of unknown function. The expression of the orf1glnKamtB operon is increased under nitrogen-limiting conditions and is dependent on NtrC. An amtB mutant failed to transport methylammonium. Post-translational control of nitrogenase was also partially impaired in this mutant, since a complete switch-off of nitrogenase after ammonium addition was not observed. This result suggests that the AmtB protein is involved in the signaling pathway for the reversible inactivation of nitrogenase in H. seropedicae.  相似文献   

6.
Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.  相似文献   

7.
8.
DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative σ54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV?NifW?), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.  相似文献   

9.
Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. ‘Information theory’ quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed.  相似文献   

10.
Under N2-fixing conditions, Azotobacter vinelandii expresses a specific transport system for methylammonium (ammonium) [E. M. Barnes, Jr. and P. Zimniak (1981) J. Bacteriol. 146, 512–516]. This activity is decreased markedly by culture of cells in the presence of 10 mm ammonium or 2 mm methylammonium; in both cases, the Vmax values for methylammonium uptake were 25% of those of N2-fixing cells. Mixing experiments with assay medium indicate that transport activity is controlled by intracellular rather than extracellular metabolites. Glutamine synthetase activity of cells cultured with ammonium was 33% that of N2-fixing cultures, but activity was unaffected by incubation with methylammonium. Thus ammonium transport and ammonium fixation are regulated independently. When ammonium was removed from the medium, cells recovered over 90% of the initial transport activity after 1 h; this recovery was not affected by addition of chloramphenicol. The loss of uptake activity in cells incubated with ammonium or methylammonium correlated with over sixfold increases in intracellular levels of glutamine and γ-glutamylmethylamide, respectively. Recovery of transport was accompanied by similar reductions in pools of these compounds. Over one-half of methylammonium transport activity could be blocked by direct addition of 10 mm glutamine or γ-glutamylmethylamide to transport assays; these concentrations were similar to those observed in vivo. The glutamine analog, 6-diazo-5-oxo-l-norleucine, was the most potent inhibitor found (68% inhibition at 10 μm). These results indicate that the regulation of ammonium transport by ammonium and methylammonium is due to inhibition of the transporter by intracellular γ-glutamyl amides rather than by repression of transporter synthesis.  相似文献   

11.
The response of free-swimming Rhodobacter sphaeroides to increases and decreases in the intensity of light of different wavelengths was analyzed. There was a transient (1 to 2 s) increase in swimming speed in response to an increase in light intensity, and there was a similar transient stop when the light intensity decreased. Measurement of changes in membrane potential and the use of electron transport inhibitors showed that the transient increase in swimming speed, following an increase in light intensity, and the stop following its decrease were the result of changes in photosynthetic electron transport. R. sphaeroides has two operons coding for multiple homologs of the enteric chemosensory genes. Mutants in the first chemosensory operon showed wild-type photoresponses. Mutants with the cheA gene of the second operon (cheAII) deleted, either with or without the first operon present, showed inverted photoresponses, with free-swimming cells stopping on an increase in light intensity and increasing swimming speed on a decrease. These mutants also lacked adaptation. Transposon mutants with mutations in cheAII, which also reduced expression of downstream genes, however, showed no photoresponses. These results show that (i) free-swimming cells respond to both an increase and a decrease in light intensity (tethered cells only show the stopping on a step down in light intensity), (ii) the signal comes from photosynthetic electron transfer, and (iii) the signal is primarily channelled through the second chemosensory pathway. The different responses shown by the cheAII deletion and insertion mutants suggest that CheWII is required for photoresponses, and a third sensory pathway can substitute for CheAII as long as CheWII is present. The inverted response suggests that transducers are involved in photoresponses as well as chemotactic responses.  相似文献   

12.
13.
A deletion was engineered in the cloned recF gene by digestion with suitable restriction endonucleases and a tetracycline resistance gene cartridge was inserted. The mutation was subsequently transferred to the Azotobacter vinelandii chromosome by double cross-over under pressure of tetracycline selection. A recF recA mutant was also constructed in a similar manner. The mutations were found to be stable and mutation of the wild-type recF gene was confirmed by Southern blot hybridization. Both the mutants were UV sensitive and recombination deficient. Mutations in genes involved in nitrogen fixation in A. vinelandii are rather frequent and obtained comparatively easily despite of the presence of multiple identical chromosomes in A. vinelandii. It has been speculated that some kind of `homogenotization' process operates which is responsible for the `transmission' of mutation from one chromosome to all the chromosomes. This process is not affected by a mutation in recF or recA or in both recF and recA.  相似文献   

14.
The role of three key nitrogen regulatory genes, glnB (encoding the PII protein), glnZ (encoding the Pz protein), and glnD (encoding the GlnD protein), in regulation of poly-3-hydroxybutyrate (PHB) biosynthesis by ammonia in Azospirillum brasilense Sp7 was investigated. It was observed that glnB glnZ and glnD mutants produce substantially higher amounts of PHB than the wild type produces during the active growth phase. glnB and glnZ mutants have PHB production phenotypes similar to that of the wild type. Our results indicate that the PII-Pz system is apparently involved in nitrogen-dependent regulation of PHB biosynthesis in A. brasilense Sp7.  相似文献   

15.
A wild-type strain, Sp972 h, of Schizosaccharomyces pombe was mutagenized with ethylmethanesulfonate (EMS), and 2-deoxyglucose (2-DOG)-resistant mutants were isolated. Out of 300 independent 2-DOG-resistant mutants, 2 failed to grow on glucose and fructose (mutants 3/8 and 3/23); however, their hexokinase activity was normal. They have been characterized as defective in their sugar transport properties, and the mutations have been designated as std1-8 and std1-23 (sugar transport defective). The mutations are allelic and segregate as part of a single gene when the mutants carrying them are crossed to a wild-type strain. We confirmed the transport deficiency of these mutants by [14C]glucose uptake. They also fail to grow on other monosaccharides, such as fructose, mannose, and xylulose, as well as disaccharides, such as sucrose and maltose, unlike the wild-type strain. Lack of growth of the glucose transport-deficient mutants on maltose revealed the extracellular breakdown of maltose in S. pombe, unlike in Saccharomyces cerevisiae. Both of the mutants are unable to grow on low concentrations of glucose (10 to 20 mM), while one of them, 3/23, grows on high concentrations (50 to 100 mM) as if altered in its affinity for glucose. This mutant (3/23) shows a lag period of 12 to 18 h when grown on high concentrations of glucose. The lag disappears when the culture is transferred from the log phase of its growth on high concentrations. These mutants complement phenotypically similar sugar transport mutants (YGS4 and YGS5) reported earlier by Milbradt and Hoefer (Microbiology 140:2617–2623, 1994), and the clone complementing YGS4 and YGS5 was identified as the only glucose transporter in fission yeast having 12 transmembrane domains. These mutants also demonstrate two other defects: lack of induction and repression of shunt pathway enzymes and defective mating.  相似文献   

16.
DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative 54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifVNifW), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.  相似文献   

17.
18.
Two toluene-sensitive mutants were generated from Pseudomonas putida IH-2000, the first known toluene-tolerant isolate, by Tn5 transposon mutagenesis. These mutants were unable to grow in the presence of toluene (log Pow 2.8) but they could grow in medium overlaid with organic solvents having a log Pow value higher than that of toluene such as p-xylene (log Pow 3.1), cyclohexane (log Pow 3.4) and n-hexane (log Pow 3.9). The Tn5 transposable element knocked out a cyoB-like gene in one mutant and a cyoC-like gene in the other mutant. Seven open reading frames were found in a 5.5-kb region containing the cyoB- and cyoC-like genes of strain IH-2000. ORFs 3–7 showed significant identity to the cyoABCDE gene products of Escherichia coli, but ORFs 1 and 2 showed no significant homology to any protein reported so far. The growth patterns of the Tn5 mutants with the inactivated cyo-like gene were similar to that of the wild-type strain in the absence of organic solvents, although the doubling times were slightly longer than that of the wild-type strain. Our findings indicate that cyo is an important gene for toluene tolerance, although its role is still unclear.  相似文献   

19.
GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK1 and glnK2. The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK1 and GlnK2. Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This protein–protein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK1 and GlnK2 produced equivalent results.  相似文献   

20.
Mutant strains of Azotobacter vinelandii that are unable to fix nitrogen were analyzed for their ability to reduce acetylene and oxidize dithionite. The activities of Components I (Fe-Mo-protein) and II (Fe-protein), the presence of antibody cross-reacting material to each of the components and the electron paramagnetic resonance (EPR) intensities at g = 3.65 also were examined in these strains. All mutant strains so far studied that are unable to reduce nitrogen, are also incapable of reducing acetylene or oxidizing dithionite. Representatives of various nitrogenaseless mutants have been characterized. Based on activity measurements they fall into three classes: those lacking both components (I?II?), those lacking Component I (I?II+) and those lacking Component II (I+II?). Many strains have extremely low levels of activity for either component, but in some of these strains, cross-reacting material is made for one or both of the components. The EPR at g = 3.65 correlates well with the activity for Component I in several of these mutant strains, but in four of the mutants there appears to be 10-20-fold higher amounts of paramagnetic center than the nitrogen-fixing activity in in vitro tests would indicate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号