首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
内参基因加标法定量土壤微生物目标基因绝对拷贝数   总被引:1,自引:0,他引:1  
【目的】通过荧光定量PCR技术对土壤微生物目标基因进行绝对定量,其定量结果的准确性容易受到DNA提取得率以及腐殖酸抑制性的影响。【方法】采用内参基因加标法,利用构建的突变质粒DNA,对供试水稻土壤样品中的微生物16S r RNA目标基因的绝对拷贝数进行荧光定量PCR检测,用来表征该样品中细菌群落总体丰度。在定量前通过双向引物扩增方法验证突变质粒中的内参基因对供试土壤的特异性。【结果】不同水稻土壤样品的DNA提取量在样品间差异较大。通过内参基因加标法对DNA提取量进行校正,显著提高了16S r RNA基因绝对定量的精确度。不同水稻土壤样品间的变异系数为17.8,与未加标处理相比降低了66.7%。在此基础上,进一步通过内参基因加标法对土壤有机质和含水率均呈现典型空间特征差异的6处亚热带湿地土壤样品中的16S r RNA基因进行绝对定量。16S r RNA基因绝对拷贝数与土壤微生物生物量碳具有显著的线性相关性(R2=0.694,P0.001),表明内参校正后的16S r RNA基因绝对拷贝数可以准确反映单位质量土壤中微生物的丰度。【结论】内参基因加标法可以对DNA提取得率以及腐殖酸对PCR扩增的抑制性进行校正,从而提高绝对定量的准确性。基于内参基因加标法的目标基因绝对定量PCR检测,可作为土壤微生物生物量测量,以及微生物功能基因绝对丰度定量的一种核酸检测方法。  相似文献   

2.

Background  

Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD.  相似文献   

3.
Rapid and simple comparison of messenger rna levels using real-time PCR   总被引:2,自引:0,他引:2  
Real-time polymerase chain reaction (PCR) constitutes a significant improvement over traditional end-point PCR, as it allows the quantification of starting amounts of nucleic acid templates, in real-time. However, quantification requires validation through numerous internal controls and standard curves. We describe in this paper a simple protocol which uses real-time PCR to compare mRNA levels of a gene of interest between different experimental conditions. Comparative real-time PCR can be a relatively low-cost method and does not require sequence-specific fluorescent reporters. Moreover, several genes from a set of experiments can be assessed in a single run. Thus, in addition to providing a comparative profile for the expression of a gene of interest, this method can also provide information regarding the relative abundance of different mRNA species.  相似文献   

4.
同步PCR是一种集生化、光电和计算机技术于一体的封闭式DNA扩增系统,采用荧光染料将扩增与检测过程结合在一起,实现了在PCR过程中在线显示PCR反应,通过检测荧光强度来绝对定量起始模板的拷贝数.该技术大大简化和加速了核酸分子的定量过程,不仅快速、灵敏、准确、重复性好,而且很容易计算出待测样品中核酸分子的绝对起始拷贝数.同微阵列等分子生物技术一起,同步PCR技术将会在功能基因解析和病害分子诊断等方面发挥重要作用.本综述除了介绍同步PCR技术的原理和应用外,还介绍了定量拟南芥Aux/IAA基因的转录水平的实验,并就同步PCR操作过程中的问题进行了讨论.  相似文献   

5.
6.
7.
8.
Nucleic acid quantification is a relevant issue for the characterization of mammalian recombinant cell lines and also for the registration of producer clones. Quantitative real-time PCR is a powerful tool to investigate nucleic acid levels but numerous different quantification strategies exist, which sometimes lead to misinterpretation of obtained qPCR data. In contrast to absolute quantification using amplicon- or plasmid standard curves, relative quantification strategies relate the gene of interest to an endogenous reference gene. The relative quantification methods also consider the amplification efficiency for the calculation of the gene copy number and thus more accurate results compared to absolute quantification methods are generated. In this study two recombinant Chinese hamster ovary cell lines were analysed for their transgene copy number using different relative quantification strategies. The individual calculation methods resulted in differences of relative gene copy numbers because efficiency calculations have strong impact on gene copy numbers. However, in context of comparing transgene copy numbers of two individual clones the influence of the calculation method is marginal. Therefore especially for the comparison of two cell lines with the identical transgene any of the relative qPCR methods was proven as powerful tool.  相似文献   

9.
Real-time PCR quantification of precursor and mature microRNA   总被引:9,自引:0,他引:9  
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.  相似文献   

10.
Accurate quantification of nucleic acids by competitive (RT)–PCR requires a valid internal standard, a reference for data normalization and an adequate mathematical model for data analysis. We report here an effective procedure for the generation of homologous RNA internal standards and a strategy for synthesizing and using a reference target RNA in quantification of absolute amounts of nucleic acids. Further, a new mathematical model describing the general kinetic features of competitive PCR was developed. The model extends the validity of quantitative competitive (RT)–PCR beyond the exponential phase. The new method eliminates the errors arising from different amplification efficiencies of the co-amplified sequences and from heteroduplex formation in the system. The high accuracy (relative error <2%) is comparable to the recently developed real time detection 5′-nuclease PCR. Also, corresponding computer software has been devised for practical data analysis.  相似文献   

11.
Accurate quantification of nucleic acids by competitive (RT)-PCR requires a valid internal standard, a reference for data normalization and an adequate mathematical model for data analysis. We report here an effective procedure for the generation of homologous RNA internal standards and a strategy for synthesizing and using a reference target RNA in quantification of absolute amounts of nucleic acids. Further, a new mathematical model describing the general kinetic features of competitive PCR was developed. The model extends the validity of quantitative competitive (RT)-PCR beyond the exponential phase. The new method eliminates the errors arising from different amplification efficiencies of the co-amplified sequences and from heteroduplex formation in the system. The high accuracy (relative error <2%) is comparable to the recently developed real time detection 5'-nuclease PCR. Also, corresponding computer software has been devised for practical data analysis.  相似文献   

12.
Despite the recent introduction of real-time PCR methods and cDNA microarrays, competitive PCR techniques continue to play an important role in nucleic acid quantification because of the significantly lower cost of equipment and consumables. In this study, we developed a construct, termed tumor suppressor-internal standard (TS-IS) that produced polycompetitive RNA templates as an internal standard to quantify cellular RNA concentration of tumor suppressor genes. This construct is composed of not only sets of primers for detecting the expression of several tumor suppressor genes (such as pRB, p16(INK4A) 15(INK4B), p14(ARF) p53, and p21(WAF1)), but also HPRT as an endogenous marker. Using an internal standard RNA that was synthesized from the TS-IS construct, we were able to establish optimized conditions for the quantification of tumor suppressor genes with minimal amounts (50 ng) of cellular RNA. In addition, the usefulness of this method was confirmed by analyzing the expression levels of tumor suppressor genes in fourteen hepatoma cell lines as a model. The TS-IS assay that we used was inexpensive and a widely applicable method that permitted the reliable and accurate quantification of tumor suppressor genes.  相似文献   

13.
数字聚合酶链反应(polymerase chain reaction,PCR)采用与定量PCR相同的荧光化学原理和不同的数学原理来实现对靶标核酸序列的绝对定量,其摒弃了对外部参照的依赖,同时具有更高的数据精密度,提高了重复性和再现性。数字PCR的应用涵盖生命科学众多领域,特别是在医学检验领域,其对疾病相关核酸分子标记的准确分析,为疾病的早期诊断、进展监测、疗效评估提供了动态量化指标。数字PCR的出现将推动基于核酸扩增技术的分子生物学检测迈入精准定量阶段。本文就数字PCR尤其是微滴式数字PCR在感染性疾病中的应用进展及前沿进行综述。  相似文献   

14.
实时PCR技术在植物研究上的应用   总被引:3,自引:0,他引:3  
实时PCR是在常规PCR基础上运用荧光共振能量转移现象,加入荧光标记探针,巧妙地把核酸扩增、杂交、光谱分析和实时检测技术结合在一起的一项新技术,具有快速、灵敏、特异性强、定量准确等特点,广泛应用于医学、检验检疫、军事、农业、基础研究等领域。着重就实时PCR技术的特性及在植物上的应用进行了讨论,并与目前常用的相关技术进行了比较。  相似文献   

15.
Quantitative real-time PCR has revolutionized many aspects of genetic research, biomedical diagnostics and pathogen detection. Nevertheless, the full potential of this technology has yet to be realized, primarily due to the limitations of the threshold-based methodologies that are currently used for quantitative analysis. Prone to errors caused by variations in reaction preparation and amplification conditions, these approaches necessitate construction of standard curves for each target sequence, significantly limiting the development of high-throughput applications that demand substantive levels of reliability and automation. In this study, an alternative approach based upon fitting of fluorescence data to a four-parametric sigmoid function is shown to dramatically increase both the utility and reliability of quantitative real-time PCR. By mathematically modeling individual amplification reactions, quantification can be achieved without the use of standard curves and without prior knowledge of amplification efficiency. Combined with provision of quantitative scale via optical calibration, sigmoidal curve-fitting could confer the capability for fully automated quantification of nucleic acids with unparalleled accuracy and reliability.  相似文献   

16.
同步PCR技术及其在植物核酸分子定量中的应用   总被引:3,自引:0,他引:3  
同步PCR是一种集生化、光电和计算机技术于一体的封闭式DNA扩增系统,采用荧光染料将扩增与检测过程结合在一起,实现了在PCR过程中在线显示PCR反应,通过检测荧光强度来绝对定量起始模板的拷贝数。该技术大大简化和加速了核酸分子的定量过程,不仅快速、灵敏、准确、重复性好,而且很容易计算出待测样品中核酸分子的绝对起始拷贝数。同微阵列等分子生物技术一起,同步PcR技术将会在功能基因解析和病害分子诊断等方面发挥重要作用。本综述除了介绍同步.PCR技术的原理和应用外,还介绍了定量拟南芥,Aux/正4,4基因的转录水平的实验,并就同步PCR操作过程中的问题进行了讨论。  相似文献   

17.
Lin CH  Chen YC  Pan TM 《PloS one》2011,6(12):e29101
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.  相似文献   

18.
19.
Pseudomonas fluorescens strains F113 and CHA0 are well-known plant growth-promoting rhizobacteria (PGPR) often used as model strains in biocontrol experiments. To monitor their persistence in large scale field experiments, culture-independent methods are needed. In this study, a strain-specific real-time PCR quantification tool was developed based on sequence-characterized amplified regions (SCAR) for P. fluorescens strains F113, CHA0 and Pf153. Differences in DNA extraction efficiencies from rhizosphere samples were circumvented using plasmid APA9 as internal standard to normalize CT values after real-time amplification. The detection limits of the real-time PCR assays for all three strains were approximately 10 cells for genomic DNA and 104 cells/g rhizosphere for maize samples grown in different natural soils. Population sizes of the three strains in the rhizosphere of maize measured by the new real-time PCR approaches were similar to those measured by most probable number (MPN)-PCR. A persistence study of the three strains indicated that the strains persisted differently over a period of 5 weeks. In conclusion the newly developed real-time PCR approach is a fast and resource efficient method for monitoring individual biocontrol strains in natural soil, which makes it an apt quantification tool for future large-scale field experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号