首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia H  Bi J  Li Y 《Nucleic acids research》2006,34(21):6305-6313
Alternative splicing plays an important role in regulating gene expression. Currently, most efficient methods use expressed sequence tags or microarray analysis for large-scale detection of alternative splicing. However, it is difficult to detect all alternative splice events with them because of their inherent limitations. Previous computational methods for alternative splicing prediction could only predict particular kinds of alternative splice events. Thus, it would be highly desirable to predict alternative 5'/3' splice sites with various splicing levels using genomic sequences alone. Here, we introduce the competition mechanism of splice sites selection into alternative splice site prediction. This approach allows us to predict not only rarely used but also frequently used alternative splice sites. On a dataset extracted from the AltSplice database, our method correctly classified approximately 70% of the splice sites into alternative and constitutive, as well as approximately 80% of the locations of real competitors for alternative splice sites. It outperforms a method which only considers features extracted from the splice sites themselves. Furthermore, this approach can also predict the changes in activation level arising from mutations in flanking cryptic splice sites of a given splice site. Our approach might be useful for studying alternative splicing in both computational and molecular biology.  相似文献   

2.
使用估计的反应自由能预测组成性和可变剪接位点   总被引:2,自引:0,他引:2  
基因结构预测中的一个重要步骤是精确地识别剪接位点。基于剪接反应的基本物理原则,最大信息原理被应用到剪接反应的理论分析中,进而导出了反应自由能估计表达式。作为一个简化模型,这个表达式能被用来估计一个5′剪接区或者3′剪接区所参与的剪接反应中的自由能变化。它不但较全面地概括了各个碱基之间的关联,而且还考虑了基因组背景概率的影响。这个反应自由能表达式被用来预测了人类基因中的组成性和可变剪接位点,预测结果是令人满意的,其预测能力比得上当前的一些流行方法。这说明最大信息原理可以作为研究某些核酸-蛋白质相互作用系统(如剪接反应)的理论出发点,导出的反应自由能表达式较好地符合了剪接反应过程。  相似文献   

3.
The choice of a splice site is not only related to its own intrinsic strength, but also is influenced by its flanking competitors. Splice site competition is an important mechanism for splice site prediction, especially, it is a new insight for alternative splice site prediction. In this paper, the position weight matrix scoring function is used to represent splice site strength, and the mechanism of splice site competition is described by only one parameter: scoring function subtraction. While applying on the alternative splice site prediction, based on the only one parameter, 68.22% of donor sites and 70.86% of acceptor sites are correctly classified into alternative and constitutive. The prediction abilities are approximately equal to the recent method which is based on the mechanism of splice site competition. The results reveal that the scoring function subtraction is the best parameter to describe the mechanism of splice sites competition.  相似文献   

4.
Alternative 3' and 5' splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3'ss and 5'ss exons. The results revealed that alternative 3'ss and 5'ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3'ss and 5'ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

5.
6.
We have characterized a novel positive-acting splicing element within the developmentally regulated alternative exon (exon 5) of the cardiac troponin T (cTNT) gene. The exon splicing element (ESE) is internal to the exon portions of the splice sites and is required for splicing to the 3' splice site but not the 5' splice site flanking the exon. Sequence comparisons between cTNT exon 5 and other exons that contain regions required for splicing reveal a common purine-rich motif. Sequence within cTNT exon 5 or a synthetic purine-rich motif facilitates splicing of heterologous alternative and constitutive splice sites in vivo. Interestingly, the ESE is not required for the preferential inclusion of cTNT exon 5 observed in primary skeletal muscle cultures. Our results strongly suggest that the purine-rich ESE serves as a general splicing element that is recognized by the constitutive splicing machinery.  相似文献   

7.
Alternative 3′ and 5′ splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3′ss and 5′ss exons. The results revealed that alternative 3′ss and 5′ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3′ss and 5′ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

8.
Combinatorial control of exon recognition   总被引:3,自引:0,他引:3  
Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.  相似文献   

9.
Alternative splicing constitutes a major mechanism creating protein diversity in humans. This diversity can result from the alternative skipping of entire exons or by alternative selection of the 5′ or 3′ splice sites that define the exon boundaries. In this study, we analyze the sequence and evolutionary characteristics of alternative 3′ splice sites conserved between human and mouse genomes for distances ranging from 3 to 100 nucleotides. We show that alternative splicing events can be distinguished from constitutive splicing by a combination of properties which vary depending on the distance between the splice sites. Among the unique features of alternative 3′ splice sites, we observed an unexpectedly high occurrence of events in which a polypyrimidine tract was found to overlap the upstream splice site. By applying a machine-learning approach, we show that we can successfully discriminate true alternative 3′ splice sites from constitutive 3′ splice sites. Finally, we propose that the unique features of the intron flanking alternative splice sites are indicative of a regulatory mechanism that is involved in splice site selection. We postulate that the process of splice site selection is influenced by the distance between the competitive splice sites.  相似文献   

10.
11.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

12.
In the NL4-3 strain of human immunodeficiency virus type 1 (HIV-1), regulatory elements responsible for the relative efficiencies of alternative splicing at the tat, rev, and the env/nef 3' splice sites (A3 through A5) are contained within the region of tat exon 2 and its flanking sequences. Two elements affecting splicing of tat, rev, and env/nef mRNAs have been localized to this region. First, an exon splicing silencer (ESS2) in NL4-3, located approximately 70 nucleotides downstream from the 3' splice site used to generate tat mRNA, acts specifically to inhibit splicing at this splice site. Second, the A4b 3' splice site, which is the most downstream of the three rev 3' splice sites, also serves as an element inhibiting splicing at the env/nef 3' splice site A5. These elements are conserved in some but not all HIV-1 strains, and the effects of these sequence changes on splicing have been investigated in cell transfection and in vitro splicing assays. SF2, another clade B virus and member of the major (group M) viruses, has several sequence changes within ESS2 and uses a different rev 3' splice site. However, splicing is inhibited by the two elements similarly to NL4-3. As with the NL4-3 strain, the SF2 A4b AG dinucleotide overlaps an A5 branchpoint, and thus the inhibitory effect may result from competition of the same site for two different splicing factors. The sequence changes in ANT70C, a member of the highly divergent outlier (group O) viruses, are more extensive, and ESS2 activity in tat exon 2 is not present. Group O viruses also lack the rev 3' splice site A4b, which is conserved in all group M viruses. Mutagenesis of the most downstream rev 3' splice site of ANT70C does not increase splicing at A5, and all of the branchpoints are upstream of the two rev 3' splice sites. Thus, splicing regulatory elements in tat exon 2 which are characteristic of most group M HIV-1 strains are not present in group O HIV-1 strains.  相似文献   

13.
TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.  相似文献   

14.
完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段.  相似文献   

15.
During an adenovirus infection the expression of mRNA from late region L1 is temporally regulated at the level of alternative 3' splice site selection to produce two major mRNAs encoding the 52,55K and IIIa polypeptides. The proximal 3' splice site (52,55K) is used at all times of the infectious cycle whereas the distal site (IIIa) is used exclusively late after infection. We show that a single A branch nucleotide located at position -23 is used in 52,55K splicing and that two A's located at positions -21 and -22 are used in IIIa splicing. Both 3' splice sites were active in vitro in nuclear extracts prepared from uninfected HeLa cells. However, the efficiency of IIIa splicing was only approximately 10% of 52,55K splicing. This difference in splice site activity correlated with a reduced affinity of the IIIa, relative to the 52,55K, 3' splice site for polypyrimidine tract binding proteins. Reversing the order of 3' splice sites on a tandem pre-mRNA resulted in an almost exclusive IIIa splicing indicating that the order of 3' splice site presentation is important for the outcome of alternative L1 splicing. Based on our results we suggest a cis competition model where the two 3' splice sites compete for a common RNA splicing factor(s). This may represent an important mechanism by which L1 alternative splicing is regulated.  相似文献   

16.
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.  相似文献   

17.
Despite the important role of alternative splicing in various aspects of biological processes, our ability to regulate this process at will remains a challenge. In this report, we asked whether a theophylline-responsive riboswitch could be adapted to manipulate alternative splicing. We constructed a pre-mRNA containing a single upstream 5' splice site and two 3' splice sites, of which the proximal 3' splice site is embedded in theophylline-responsive riboswitch. We show that this pre-mRNA spliced with preferential utilization of proximal 3' splice site in vitro. However, addition of theophylline to the splicing reaction promoted splicing at distal 3' splice site thereby changing the ratio of distal-to-proximal 3' splice site usage by more than twofold. Our data suggest that theophylline influenced 3' splice site choice without affecting the kinetics of the splicing reaction. We conclude that an in vitro selected riboswitch can be adapted to control alternative splicing, which may find many applications in basic, biotechnological, and biomedical research.  相似文献   

18.
Multiple splicing defects in an intronic false exon   总被引:18,自引:0,他引:18       下载免费PDF全文
  相似文献   

19.
In vitro splicing of fibronectin pre-mRNAs.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号