首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying climate-growth associations is needed to evaluate how forest productivity will respond to climate change. Year-to-year fluctuations in forest productivity and radial growth are partly explained by local climatic conditions driven by large-scale atmospheric patterns. This is illustrated by Iberian forests in the western Mediterranean Basin, which are subjected to complex climatic and atmospheric influences such as Atlantic and Mediterranean cyclogenesis. The North Atlantic Oscillation (NAO) is one of the major atmospheric circulation patterns affecting Iberian forests since positive winter NAO phases lead to dry and warm conditions. The Western Mediterranean Oscillation (WeMO) may also explain Iberian forest growth in some areas since this index captures Mediterranean cyclogenesis and WeMO negative phases are linked to warm and wet spring to summer conditions. Here, we analyze the associations between atmospheric patterns, climate and tree growth and we determine if they are changing through time. We use dendrochronology to relate radial growth of four tree species (Pyrenean oak, Sweet chestnut, Maritime pine and Scots pine) growing in western Spain to climate conditions and the NAO and WeMO indices. Winter and early spring temperatures increased since the 1950s in the area whereas the negative association between winter precipitation and the NAO strengthened since then. However, mean temperature rise was particularly evident since the 1970s. Growth was reduced by dry conditions during the growing season (spring and summer), but also by cold and dry conditions during the previous autumn and winter. This explains why the NAO January and the WeMo April indices were negative to growth of three species excluding Pyrenean oak. The early 1970s reflected an inflection point in the instability of climate-growth associations in the study area. We conclude that the winter NAO is a relevant driver of forest growth in the western Iberian Peninsula forests but additional atmospheric patterns (WeMO) also affect, albeit to a minor extent, these forests.  相似文献   

2.
1. Experimental studies have indicated in freshwater ecosystems that a shift in dominance from submerged to free‐floating macrophytes may occur with climate change because of increased water surface temperatures and eutrophication. Field evidence is, however, rare. 2. Here, we analysed long‐term (26 years) dynamics of macrophyte cover in Dutch ditches in relation to Dutch weather variables and the North Atlantic Oscillation (NAO) winter index. The latter appears to be a good proxy for Dutch weather conditions. 3. Cover of both free‐floating macrophytes and evergreen overwintering submerged macrophytes was positively related to mild winters (positive NAO winter index). On the other hand, high cover of submerged macrophytes that die back in winter coincided with cold winters (negative NAO winter index). Our results therefore suggest that the effect of weather on macrophyte species depends strongly on their overwintering strategy. 4. The positive relation of free‐floating macrophytes with the NAO winter index was significantly stronger in ditches in organic soil than in those in inorganic soil. This may be because of increased nutrient loading associated with increased decomposition of organic matter and increased run‐off to these ditches during mild wet winters. 5. Our results suggest that mild winters in a changing climate may cause submerged macrophytes with an evergreen overwintering strategy and free‐floating macrophytes to outcompete submerged macrophytes that die back in winter.  相似文献   

3.
Samples of soft-sediment macrobenthos from 92 sites between 10 and 50 m depth were used to assess (1) the main soft-bottom macrofauna communities in the Gulf of Lions, (2) the different components of the diversity of benthic macrofauna in this area, and (3) the relevance of the use of major taxonomic groups as surrogates for the analysis of the structure and diversity of total macrofauna. Three main communities were identified by cluster analysis and associated procedures. These communities corresponded well to the assemblages recently identified on the basis of polychaete composition. The α-diversity indices were in accordance with those reported for similar communities in the Mediterranean. Conversely, the β-diversity value was higher than the few other data available in the literature for marine soft-bottom macrofauna. The total number of species in the studied area estimated by the “total species accumulation curve” (TS) method was 2,319, which was only 10% higher than the number obtained by extrapolation of the species–area curve. The similarity matrix based on polychaetes correlated best with the one based on total macrofauna. Polychaetes and crustaceans were also the best surrogates of total macrofauna when assessing α-diversity (except in the case of Δ*). Conversely, molluscs were the best surrogates of total macrofauna β-diversity. Our results show that the choice of an optimal surrogate for total benthic macrofauna depends on the characteristic of the benthic macrofauna to be studied. Moreover, this choice is also dependent on the environment to be studied.  相似文献   

4.
胶州湾西部海域大型底栖动物多样性的研究   总被引:1,自引:0,他引:1  
为了揭示胶州湾最近几年底栖动物多样性的变化, 作者于2003年9月到2004年9月在胶洲湾西部海域5个测站每2个月1次共进行了7个航次采样, 以种类组成、生物量和栖息密度为基础, 对大型底栖动物多样性进行了分析。使用PRIMER软件计算得到以下变量: 群落的物种数(S)、丰富度(D)、Shannon-Wiener物种多样性指数(H')和均匀度指数(J')。结果表明: 位于大沽河口的D站和水道中央的S站的多样性最低; 养殖区内外站位的多样性差异显著; 丰度/生物量曲线表明, 养殖区内的底栖动物群落已经受到了一定程度的扰动。群落物种数(S)和丰富度(D)的季节性变化明显, 春季和秋季较低, 夏季和冬季较高。分析菲律宾蛤仔(Ruditapes philippinarum)增养殖区的站位(D)发现, 多样性指数和丰富度与次级生产力有着负相关的关系。物种多样性指数和丰度/生物量曲线的分析显示, 该研究海域处于一个轻度人为扰动的状态。  相似文献   

5.
To model the effects of global climate phenomena on avian population dynamics, we must identify and quantify the spatial and temporal relationships between climate, weather and bird populations. Previous studies show that in Europe, the North Atlantic Oscillation (NAO) influences winter and spring weather that in turn affects resident and migratory landbird species. Similarly, in North America, the El Niño/Southern Oscillation (ENSO) of the Pacific Ocean reportedly drives weather patterns that affect prey availability and population dynamics of landbird species which winter in the Caribbean. Here we show that ENSO‐ and NAO‐induced seasonal weather conditions differentially affect neotropical‐ and temperate‐wintering landbird species that breed in Pacific North‐west forests of North America. For neotropical species wintering in western Mexico, El Niño conditions correlate with cooler, wetter conditions prior to spring migration, and with high reproductive success the following summer. For temperate wintering species, springtime NAO indices correlate strongly with levels of forest defoliation by the larvae of two moth species and also with annual reproductive success, especially among species known to prey upon those larvae. Generalized linear models incorporating NAO indices and ENSO precipitation indices explain 50–90% of the annual variation in productivity reported for 10 landbird species. These results represent an important step towards spatially explicit modelling of avian population dynamics at regional scales.  相似文献   

6.
张莹  吕振波  徐宗法  刘义豪  靳洋 《生态学报》2011,31(15):4455-4467
2006-2007年对山东半岛南部4个海湾(荣成湾、桑沟湾、靖海湾和五垒岛湾)19个站位的底栖动物群落结构特征进行了研究,并对14个环境因素和底栖动物群落生态特征分别进行主成分分析和Spearman相关分析。结果显示,荣成湾、桑沟湾和靖海湾的底栖动物种类中,多毛类所占比例最高,而五垒岛湾仅秋、冬季多毛类所占比例最高。根据聚类分析和非度量多维标度方法分析,4季底栖动物群落均可分为2个群落,春、冬季的第一聚群为靖海湾和五垒岛湾,第二聚群为荣成湾和桑沟湾。秋季荣成湾、桑沟湾、靖海湾组成第一聚群,第二聚群由五垒岛湾构成。夏季,底栖动物Shannon-Wiener多样性指数(H')与采样深度和总碱度呈显著正相关,与水温呈极显著的负相关关系。秋季,与硝酸盐呈负相关关系,说明富营养化对山东半岛南部4个海湾大型底栖动物群落产生了一定负面影响。ABC曲线法分析显示,荣成湾和桑沟湾底栖动物的丰度优势度曲线与生物量优势度曲线相交,表明荣成湾和桑沟湾大型底栖动物群落处于中度干扰状态,密集的养殖活动可能对其生态系统带来了巨大影响,加强海水养殖管理,强化生态健康养殖理念,合理利用海洋生物资源,对大型底栖动物群落的稳定性具有重要意义。  相似文献   

7.
1. Year‐to‐year changes in the weather have a profound effect on the seasonal dynamics of zooplankton in lakes. Here, I analyse some zooplankton data from Esthwaite Water in Cumbria and demonstrate that much of the recorded inter‐annual variation can be related to regional‐scale changes in the weather.
2. The first data set analysed shows the effect of changes in the water temperature on the winter abundance of the calanoid copepod Eudiaptomus gracilis. The highest numbers of Eudiaptomus were recorded when the winters were mild and the lowest when the winters were cold.
3. Winter temperatures in northern and western Europe are now known to be influenced by the atmospheric feature known as the North Atlantic Oscillation (NAO). Positive values of the NAO are associated with mild winters and westerly winds and there was a significant positive correlation between the winter abundance of Eudiaptomus in Esthwaite Water and this empirical index of change.
4. The second data set analysed shows the effect of wind‐induced mixing on the summer abundance of Daphnia. The highest numbers of Daphnia were recorded in years when the early summer thermocline was deep and the lowest number in years when the thermocline was shallow.
5. One of the most important factors influencing the depth of the early summer thermocline in the English lakes is the position of the north‐wall of the Gulf Stream. Southerly movements of the Gulf Stream are typically associated with higher winds, whilst northerly movements are associated with stable conditions. In Esthwaite Water, a significant positive correlation was recorded between the abundance of Daphnia and the depth of the early summer thermocline and significant negative correlations between the same variables and the position of the Gulf Stream.
6. A detailed analysis of the seasonal variations recorded in one calm and one windy year suggest that the main factor responsible for these correlations was the entrainment of nutrients which then stimulated the growth of edible algae. Daphnia numbers were low in 1968 (a ‘north’ Gulf Stream year which was relatively calm) and high in 1972 (a ‘south’ Gulf Stream year with intense wind‐mixing).  相似文献   

8.
The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach‐content and stable‐isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut‐content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year‐round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability.  相似文献   

9.
The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic phenomena including climate, hurricanes, coastal development, agricultural runoff, oil spills, and fishing. These complex and interacting stressors, together with the highly dynamic nature of this ecosystem, present challenges for the effective management of its resources. We analyze a compilation of over 100 indicators representing physical, biological, and economic aspects of the Gulf of Mexico and find that an ecosystem‐wide reorganization occurred in the mid‐1990s. Further analysis of fishery landings composition data indicates a major shift in the late 1970s coincident with the advent of US national fisheries management policy, as well as significant shifts in the mid‐1960s and the mid‐1990s. These latter shifts are aligned temporally with changes in a major climate mode in the Atlantic Ocean: the Atlantic Multidecadal Oscillation (AMO). We provide an explanation for how the AMO may drive physical changes in the Gulf of Mexico, thus altering higher‐level ecosystem dynamics. The hypotheses presented here should provide focus for further targeted studies, particularly in regard to whether and how management should adjust to different climate regimes or states of nature. Our study highlights the challenges in understanding the effects of climatic drivers against a background of multiple anthropogenic pressures, particularly in a system where these forces interact in complex and nonlinear ways.  相似文献   

10.
Marine environments harbour a vast diversity of micro‐eukaryotic organisms (protists and other small eukaryotes) that play important roles in structuring marine ecosystems. However, micro‐eukaryote diversity is not well understood. Likewise, knowledge is limited regarding micro‐eukaryote spatial and seasonal distribution, especially over long temporal scales. Given the importance of this group for mobilizing energy from lower trophic levels near the base of the food chain to larger organisms, assessing community stability, diversity and resilience is important to understand ecosystem health. Herein, we use a metabarcoding approach to examine pelagic micro‐eukaryote communities over a 2.5‐year time series. Bimonthly surface sampling (July 2009 to December 2011) was conducted at four locations within Mobile Bay (Bay) and along the Alabama continental shelf (Shelf). Alpha‐diversity only showed significant differences in Shelf sites, with the greatest differences observed between summer and winter. Beta‐diversity showed significant differences in community composition in relation to season and the Bay was dominated by diatoms, while the Shelf was characterized by dinoflagellates and copepods. The northern Gulf of Mexico is heavily influenced by the Mobile River Basin, which brings low‐salinity nutrient‐rich water mostly during winter and spring. Community composition was correlated with salinity, temperature and dissolved silicate. However, species interactions (e.g. predation and parasitism) may also contribute to the observed variation, especially on the Shelf, which warrants further exploration. Metabarcoding revealed clear patterns in surface pelagic micro‐eukaryote communities that were consistent over multiple years, demonstrating how these techniques could be greatly beneficial to ecological monitoring and management over temporal scales.  相似文献   

11.
Climatic influences on animal populations, mediated by changes in condition‐dependent survival or reproduction, have long intrigued ecologists. We analyzed links between winter North Atlantic Oscillations (NAO), a large scale climatic phenomenon affecting weather conditions over the North Atlantic and the Arctic, and average pre‐laying body mass in common eiders. Body mass is a good proxy for condition‐dependent reproductive output in this species. Time series links were assessed for two eider populations breeding at high latitudes, over a 10‐ and a 21‐year time series. Winter NAO affected body mass in both populations and these effects were easier to detect when changes in the series rhythm were assessed using a novel method based on data discretization and information theory, rather than detection based on changes in amplitude, assessed using traditional linear models. Winter conditions affected body condition of eiders in both populations. Different mechanisms, however, are likely to be involved in the two populations, one being presumably affected by direct effects of climate and the other by effects through the food chain. Therefore, the same species can respond along different pathways to the same large scale climatic pattern, an important consideration when seeking to understand or manage the response of species to present and future climate change.  相似文献   

12.
Increasing evidence suggests that climate change has consequences on avian breeding phenology. Here, variations in laying date and clutch size of great tit Parus major and blue tit Parus caeruleus within and between breeding populations through the western Palaearctic are examined in relation to climatic fluctuations, measured by the winter North Atlantic Oscillation (NAO) index. Within and across breeding sites, laying date was related to winter‐NAO index such that great and blue tit females lay earlier after warmer, moister winters (positive values of winter NAO‐index). The present study shows that for most populations there is an advancement of laying date, but the rate of change with respect to NAO significantly differed geographically across the western Palaearctic and did not differ between species. However, clutch size of great and blue tits was not affected by climatic fluctuations, presumably because the whole season is being shifted, but not in relation to food supplies. These combined analyses for the two species controlled for potentially confounding variables such as latitude, longitude, elevation and habitat of each study site.  相似文献   

13.
Strong environmental seasonality is a basic feature of the Arctic system, still there are few published records of the seasonal variability of the Arctic marine biota. This study examined the year-round seasonal changes of soft bottom macro- and meiobenthic standing stocks and diversity on a station located in an Arctic fjord (Adventfjorden, Spitsbergen). The seasonality observed in benthic biota was related to the pelagic processes, primarily the seasonal fluxes of organic and inorganic particles. The highest abundance, biomass and richness of benthic fauna occurred in the spring after the phytoplankton bloom. During the summer, when a high load of glacial mineral material was transported to the fiord, the number of both meio- and macrobenthic individuals decreased remarkably. The strong inorganic sedimentation in summer was accompanied by a decline in macrobenthic species richness, but had no effects on evenness. Redundancy analysis (RDA) pointed to granulometric composition of sediments (depended on mineral sedimentation) and organic fluxes as factors best related to meio- and macrobenthic taxonomic composition, but no clear seasonal trend could be observed on the nMDS plots based on meiobenthic higher taxa or macrobenthic species abundances in the samples. This study addresses the possible effects of changes in the winter ice cover on the fjordic benthic systems because it was performed in a year with no ice cover on the fjord.  相似文献   

14.
Vegetation productivity and desertification in sub‐Saharan Africa may be influenced by global climate variability attributable to the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO). Combined and individual effects of the NAO and ENSO indices revealed that 75% of the interannual variation in the area of Sahara Desert was accounted for by the combined effects, with most variance attributable to the NAO. Effects were shown in the latitudinal variation on the 200 mm isocline, which was influenced mostly by the NAO. The combined indices explained much of the interannual variability in vegetation productivity in the Sahelian zone and southern Africa, implying that both the NAO and ENSO may be useful for monitoring effects of global climate change in sub‐Saharan Africa.  相似文献   

15.
Large‐scale climate fluctuations, such as the North Atlantic Oscillation (NAO), have a marked effect on the timing of spring migration of birds. It has however been suggested that long‐distance migrants wintering in Africa could respond less to NAO than short‐distance migrants wintering in Europe, making them more vulnerable to climatic changes. We studied whether migratory boreal and arctic bird species returning from different wintering areas show differences in responses to the NAO in the timing of their spring migration. We used data on 75 species from two bird observatories in northern Europe (60°N). By extending the examination to the whole distribution of spring migration and to a taxonomically diverse set of birds, we aimed at finding general patterns of the effects of climate fluctuation on the timing of avian migration. Most species arrived earlier after winters with high NAO index. The degree of NAO‐response diminished with the phase of migration: the early part of a species’ migratory population responded more strongly than the later part. Early phase waterfowl responded strongest to NAO, but in later phases their response faded to non‐significant. This pattern may be related to winter severity and/or ice conditions in the Baltic. In the two other groups, gulls and waders and passerines, all phases of migration responded to NAO and fading with phase was non‐significant. The difference between waterfowl and other groups may be related to differences between the phenological development of their respective macrohabitats. Wintering area affected the strength of NAO response in a complicated way. On average medium distance migrants responded most strongly, followed by short‐distance migrants and partial migrants. Our results concerning the response of long‐distance migrants were difficult to interpret: there is an overall weak yet statistically significant effect, but patterns with phase of migration need further study. Our results highlight the importance of examining the whole distribution of migration and warrant the use of data sets from several sampling sites when studying climatic effects on the timing of avian life‐history events.  相似文献   

16.
Long-term changes in the macrofauna of the Pomeranian Bay were studied by comparing survey data from the 1950s, 1980s, and 1990s. The study area has undergone significant eutrophication during the period of investigation. Biomass of filter-feeding bivalves increased significantly. Spatial distribution patterns of several species have changed. Strong decreases in species richness were caused by oxygen depletion at stations deeper than 15 m.Saduria entomon, Monoporeia affinis, andPontoporeia femorata vanished entirely between 1981 and 1993. Although a causal relationship between simultaneous increases of nutrient levels and macrobenthic biomass cannot be verified, eutrophication is proposed to be the major process affecing changes in macrofauna assemblages. In addition, changes in hydrography and climate increased frequency and severity of oxygen depletion events in the Pomeranian Bay since the mid 1980s.  相似文献   

17.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

18.
The effect of changing climatic conditions on wild populations has been the subject of much recent research. Most attention has been on the direct effects of climate changes on species of lower trophic levels and on the negative consequences of climate change. However, a deeper understanding of how climate change affects apex predators is vital, as they are keystone species that have a disproportionate effect on ecosystems. Studying survival in an apex predator requires individual‐based data from long‐term studies and is complicated by the integration of climatic effects on lower trophic levels. Here we assess how climate affects the survival of the Common Buzzard Buteo buteo. We analysed the survival of 670 males and 669 females over the period 1989–2011, during which time our study population quadrupled. We used mark–recapture survival analysis of individual resightings of breeding adults to identify the environmental factors best explaining survival. A decrease in the North Atlantic Oscillation (NAO) index increased survival to an extent that largely explains the population increase. This might be caused by higher Common Vole Microtus arvalis survival in drier conditions and under snow cover. Buzzard survival appeared to increase more for males than for females, possibly due to the males' higher sensitivity to winter food availability resulting from their smaller body mass. However, we also found that the effect of NAO strongly depended on the area in which individuals lived, especially for females. This may have been caused by the recolonization of Eagle Owls Bubo bubo in some parts of our study area. This study suggests that climatic changes can have complex effects on species of higher trophic levels via an interaction with their prey.  相似文献   

19.
The effect of the Deepwater Horizon oil spill on benthic macrofauna in the deep-sea Gulf of Mexico was measured in September–October 2010. Macrofauna community diversity and abundance were lowest closest to the wellhead and increased with distance from the wellhead up to 10 km. The macrofauna loss was primarily in surface sediments, which could be due to the deposition of oil and other toxic chemicals. Crustacean taxa appeared to be sensitive to the deep-sea blowout. Polychaete taxa varied in their sensitivity, but Dorvilleidae which is often associated with organic enrichment, was responsible for the largest amount of dissimilarity between stations close and far from the wellhead. Several other taxa were classified as sensitive or tolerant to the deep-sea blowout by comparing their distributions among impacted and non-impacted zones. The macrobenthic communities in the deep Gulf of Mexico exhibit a toxic response to the blowout on the Deepwater Horizon well, and this is correlated with barium and petroleum hydrocarbons.  相似文献   

20.
In long‐lived species, population growth rate is highly sensitive to changes in adult survival. Despite the growing concerns regarding recent climate changes, few studies have investigated the effect of climatic conditions on survival in long‐lived wildlife that are either resident or breed in the Arctic. In this study, we evaluated the effect of climate across the annual life cycle (breeding, outward migration, wintering, and inward migration) on apparent annual survival of arctic‐breeding peregrine falcons. From 1982 to 2008, peregrine falcons breeding near Rankin Inlet, Nunavut, Canada were monitored, in part, to assess apparent annual survival (the product of true survival and site fidelity) using re‐observations of marked individuals. Our study indicated that apparent annual survival of adult peregrine falcons was correlated with indices of climatic conditions during outward migration (i.e., flight from the Arctic breeding grounds). These climatic indices (fall NAO of the current year and fall NAO with a lag of one year) explained 35% of the temporal variation in apparent annual survival of peregrine falcons. Our results suggest that this top‐predator is vulnerable to weather‐related environmental conditions encountered during fall migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号