首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work reports the complete plastid (pt) DNA sequence of Seseli montanum L. of the Apiaceae family, determined using next-generation sequencing technology. The complete genome sequence has been deposited in GenBank with accession No. KM035851. The S. montanum plastome is 147,823 bp in length. The plastid genome has a typical structure for angiosperms and contains a large single-copy region (LSC) of 92,620 bp and a small single-copy region (SSC) of 17,481 bp separated by a pair of 18,861 bp inverted repeats (IRa and IRb). The composition, gene order, and AT-content in the S. montanum plastome are similar to that of a typical flowering plant pt DNA. One hundred fourteen unique genes have been identified, including 30 tRNA genes, four rRNA genes, and 80 protein genes. Of 18 intron-containing genes found, 16 genes have one intron, and two genes (ycf3, clpP) have two introns. Comparative analysis of Apiaceae plastomes reveals in the S. montanum plastome a LSC/IRb junction shift, so that the part of the ycf2 (4980 bp) gene is located in the LSC, but the other part of ycf2 (1301 bp) is within the inverted repeat. Thus, structural rearrangements in the plastid genome of S. montanum result in an enlargement of the LSC region by means of capture of a large part of ycf2, in contrast to eight Apiaceae plastomes where the complete ycf2 gene sequence is located in the inverted repeat.  相似文献   

2.
The genome structure of pear chloroplast DNA (cpDNA) is extremely highly conserved in comparison with that of other angiosperms, and therefore, relatively few phylogenetic analyses for pear (Pyrus spp.) have been carried out using cpDNA as a marker. In this study, we identified two hypervariable regions in intergenic spacers of cpDNA from 21 species in Pyrus. One of these regions is 857 bp in length and lies between the accD-psaI genes, and the other is a 904-bp region between the rps16-trnQ genes. The mutation rate of gaps for the two regions was 10 and 26 times higher, respectively, than the base change rate. Twenty-five haplotypes were revealed among 21 species in Pyrus by 36 mutations found in the two regions. These included 27 gaps and 9 base changes but excluded cpSSRs. Phylogenetic relationships between the 25 haplotypes were generated by haplotype network analysis. The 25 haplotypes represented three groups (types A–C) with two large deletions, one 228 bp in length between the accD-psaI genes and the other 141 bp between the rps16-trnQ genes. Types A and B consisted mostly of pears native to East and South Asia. Type C contained mainly Pyrus communis and wild relatives native to Europe, West and Central Asia, Russia, and Africa. Type B might have diverged from primitives such as pea pears in type A. Phylogenetic utility of structural alterations (gaps) occurring in the hypervariable regions of Pyrus cpDNA is discussed.  相似文献   

3.

Premise of the Study

As more plastomes are assembled, it is evident that rearrangements, losses, intergenic spacer expansion and contraction, and syntenic breaks within otherwise functioning plastids are more common than was thought previously, and such changes have developed independently in disparate lineages. However, to date, the magnoliids remain characterized by their highly conserved plastid genomes (plastomes).

Methods

Illumina HiSeq and MiSeq platforms were used to sequence the plastomes of Saruma henryi and those of representative species from each of the six taxonomic sections of Asarum. Sequenced plastomes were compared in a phylogenetic context provided by maximum likelihood and parsimony inferences made using an additional 18 publicly available plastomes from early‐diverging angiosperm lineages.

Key Results

In contrast to previously published magnoliid plastomes and the newly sequenced Saruma henryi plastome published here, Asarum plastomes have undergone extensive disruption and contain extremely lengthy AT‐repeat regions. The entirety of the small single copy region (SSC) of A. canadense and A. sieboldii var. sieboldii has been incorporated into the inverted repeat regions (IR), and the SSC of A. delavayi is only 14 bp long. All sampled Asarum plastomes share an inversion of a large portion of the large single copy region (LSC) such that trnE‐UUC is adjacent to the LSC‐IR boundary.

Conclusions

Plastome divergence in Asarum appears to be consistent with trends seen in highly rearranged plastomes of the monocots and eudicots. We propose that plastome instability in Asarum is due to repetitive motifs that serve as recombinatory substrates and reduce genome stability.  相似文献   

4.
It has been hypothesized that species occurring in the eastern and the western Qinghai–Tibet Plateau (QTP) responded differently to climate changes during the Pleistocene. Here, we test this hypothesis by phylogeographic analysis of two sister species, Allium cyathophorum and A. spicata. We sequenced two chloroplast DNA (cpDNA) fragments (accD‐psaI and the rpl16 intron) of 150 individuals, and the nuclear (ITS) region of 114 individuals, from 19 populations throughout the distributional ranges of these species. The divergence between the two species was dated at 779 ‐ 714 thousand years before the present and was likely initiated by the most major glaciation in the QTP. Analysis of chlorotype diversity showed that A. spicata, the species occurring in the western QTP, contains much lower genetic diversity (0.25) than A. cyathophorum (0.93), which is distributed in the eastern QTP. Moreover, multiple independent tests suggested that the A. spicata population had expanded recently, while no such expansion was detected in A. cyathophorum, indicating a contrasting pattern of responses to Pleistocene climate changes. These findings highlight the importance of geographical topography in determining how species responded to the climate changes that took place in the QTP during the Pleistocene.  相似文献   

5.
6.
Using up to 2117 bp of mitochondrial DNA and up to 2012 bp of nuclear DNA, we analysed phylogeographic differentiation of six widely distributed species of African hinged terrapins (Pelusios spp.) representing different habitat types. Two taxa each live in savannahs or in forests and mesic savannahs, respectively, and the remaining two species occur in intermediate habitats. The species living in forests and mesic savannahs do not enter dry savannahs, whereas the savannah species may occur in dry and wet savannahs and even in semi‐arid steppe regions. We found no obvious correlation between habitat type and phylogeographic pattern: one savannah species (P. rhodesianus) shows phylogeographic structure, i.e. pronounced genetic differences among geographically distinct populations, and the other (P. nanus) not. One species inhabiting forests and mesic savannahs (P. carinatus) has phylogeographic structure, the other (P. gabonensis) not. The same pattern is true for the two ecologically intermediate species, with phylogeographic structure present in P. castaneus and absent in P. chapini. Nuclear evidence suggests that the latter two taxa with abutting and partially overlapping ranges are distinct, while mtDNA is only weakly differentiated. Pelusios castaneus shows pronounced phylogeographic structure, which could reflect Pleistocene range interruptions correlated with the fluctuating forest cover in West and Central Africa. Our results do not support the recognition of an extinct subspecies of P. castaneus for the Seychelles. Pelusios carinatus contains two well supported clades, which are separated by the Congo River. This species is closely related to P. rhodesianus, a taxon consisting of two deeply divergent mitochondrial clades. One of these clades is paraphyletic with respect to P. carinatus, but the two clades of P. rhodesianus are not differentiated in the studied nuclear markers and, again, paraphyletic with respect to P. carinatus. Using mtDNA sequences from the type material of P. rhodesianus, we were able to allocate this name to one of the two clades. However, owing to the confusing relationships of P. rhodesianus and P. carinatus, we refrain from taxonomic decisions.  相似文献   

7.
The increasingly wide application of chloroplast (cp) genome super‐barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029–190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955–42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase‐like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL‐UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI‐CAU, and trnL‐CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.  相似文献   

8.
Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability.  相似文献   

9.
Jo YD  Park J  Kim J  Song W  Hur CG  Lee YH  Kang BC 《Plant cell reports》2011,30(2):217-229
Plants in the family Solanaceae are used as model systems in comparative and evolutionary genomics. The complete chloroplast genomes of seven solanaceous species have been sequenced, including tobacco, potato and tomato, but not peppers. We analyzed the complete chloroplast genome sequence of the hot pepper, Capsicum annuum. The pepper chloroplast genome was 156,781 bp in length, including a pair of inverted repeats (IR) of 25,783 bp. The content and the order of 133 genes in the pepper chloroplast genome were identical to those of other solanaceous plastomes. To characterize pepper plastome sequence, we performed comparative analysis using complete plastome sequences of pepper and seven solanaceous plastomes. Frequency and contents of large indels and tandem repeat sequences and distribution pattern of genome-wide sequence variations were investigated. In addition, a phylogenetic analysis using concatenated alignments of coding sequences was performed to determine evolutionary position of pepper in Solanaceae. Our results revealed two distinct features of pepper plastome compared to other solanaceous plastomes. Firstly, large indels, including insertions on accD and rpl20 gene sequences, were predominantly detected in the pepper plastome compared to other solanaceous plastomes. Secondly, tandem repeat sequences were particularly frequent in the pepper plastome. Taken together, our study represents unique features of evolution of pepper plastome among solanaceous plastomes.  相似文献   

10.
The mitogenome is rarely used to reconstruct the evolutionary history of plants, contrary to nuclear and plastid markers. Here, we evaluate the usefulness of mitochondrial DNA for molecular evolutionary studies in Oleaceae, in which cases of cytoplasmic male sterility (CMS) and of potentially contrasted organelle inheritance are known. We compare the diversity and the evolution of mitochondrial and chloroplast genomes by focusing on the olive complex and related genera. Using high‐throughput techniques, we reconstructed complete mitogenomes (ca. 0.7 Mb) and plastomes (ca. 156 kb) for six olive accessions and one Chionanthus. A highly variable organization of mitogenomes was observed at the species level. In olive, two specific chimeric genes were identified in the mitogenome of lineage E3 and may be involved in CMS. Plastid‐derived regions (mtpt) were observed in all reconstructed mitogenomes. Through phylogenetic reconstruction, we demonstrate that multiple integrations of mtpt regions have occurred in Oleaceae, but mtpt regions shared by all members of the olive complex derive from a common ancestor. We then assembled 52 conserved mitochondrial gene regions and complete plastomes of ten additional accessions belonging to tribes Oleeae, Fontanesieae and Forsythieae. Phylogenetic congruence between topologies based on mitochondrial regions and plastomes suggests a strong disequilibrium linkage between both organellar genomes. Finally, while phylogenetic reconstruction based on plastomes fails to resolve the evolutionary history of maternal olive lineages in the Mediterranean area, their phylogenetic relationships were successfully resolved with complete mitogenomes. Overall, our study demonstrates the great potential of using mitochondrial DNA in plant phylogeographic and metagenomic studies.  相似文献   

11.
Spondias tuberosa occurs in the Caatinga domain (seasonally dry tropical forest biome) of north-eastern Brazil, a large biome with ecogeographic regions that may have modelled the population structure of the species. Here we studied the phylogeographic pattern of S. tuberosa using sequences of the accD-psaI plastid region and six SSR markers in individuals distributed across 20 localities. The results for accD-psaI demonstrated nine haplotypes: some of which were exclusive to Caatinga ecoregions, whereas others were found in all localities. Spatial analysis of molecular variance revealed two groups (Fct?=?0.34, P?<?0.0039) with 33.91% variation between them. The SSR analyses displayed 2–5 alleles at each locus, some of which were unique to certain localities. As in the accD-psaI region, the population structure obtained using SSR markers fell into two groups: (1) a large group containing the majority of the geographic region of Caatinga and (2) a small group near the Atlantic forest. We demonstrate the population structure of S. tuberosa, identifying the Caatinga as large, continuous refuge and the region near the interface between the Caatinga and the Atlantic forest as second refuge.  相似文献   

12.
13.
We constructed a complete physical map and a partial gene map of the chloroplast genome of Cyclotella meneghiniana Kützing clone 1020-1a (Bacillariophyceae). The 128-kb circular molecule contains a 17-kb inverted repeat, which divides the genome into single copy regions of65 kb and 29 kb. This is the largest genome and inverted repeat found in any diatom examined to date. In addition to the 16S and 23S ribosomal RNA genes, the inverted repeat contains both the ndhD gene (as yet unexamined in other diatoms) and the psbA gene (located similarly in one of two other examined diatoms). The Cyclotella chloroplast genome exists as two equimolar populations of inversion isomers that differ in the relative orientation of their single copy sequences. This inversion heterogeneity presumably results from intramolecular recombination within the inverted repeat. For the first time, we map the ndhD, psaC, rpofi, rpoCl, and rpoC2 genes to the chloroplast genome of a chlorophyll c-containing alga. While the Cyclotella chloroplast genome retains some prokaryotic and land plant gene clusters and operons, it contains a highly rearranged gene order in the large and small single copy regions compared to all other examined diatom, algal, and land plant chloroplast genomes.  相似文献   

14.
Eucalypt chloroplast DNA (cpDNA) provides useful markers for phylogenetic and population research including gene flow and maternity studies. All cpDNA studies in Eucalyptus to date have been based on the RFLP technique, which requires relatively large amounts of clean DNA. The objective of this study was to develop PCR-based cpDNA markers for Eucalyptus. The chloroplast genome of Eucalyptus, like that of most angiosperms, possesses inverted repeats (IR). The two junctions between the IRs and the large single copy (LSC) regions are defined as JLA andJLB. The region surrounding the JLA junction was sequenced from 26 Eucalyptus DNA samples (21 of E. globulus, plus 5 other species), andtheJLB region was sequenced using 5 of these samples. The samples were chosen to represent all major haplotypes identified in previous cpDNA RFLP studies. The JLA products were 150–210 bp in size, while those fromJLB were approximately 500 bp in size. Eighteen mutations were scored in total. Extensive variation was found in the IR within the intergenic spacer between rpl2 and the IR/LSC junctions. Many of these characters were complex indels. One sample of E. globulus possessed a relatively large (38 bp) insertion which caused displacement of the IR/LSC junctions. This is the first report of intraspecific variation in the position of IR/LSC junctions; interspecific variation was also found. The LSC region near JLB had a low rate of mutation and none were informative. The LSC region near JLA possessed 2 informative mutations. The variation revealed from these sequences reflects the differentiation previously uncovered in an extensive RLFP analysis on the same samples. These results suggest that the JLA region will provide very useful cpDNA polymorphisms for future studies in Eucalyptus. Received: 20 March 1999 / Accepted: 16 December 1999  相似文献   

15.

Silene latifolia is an herbaceous plant with great invasive potential. Spread along trade routes from Europe to almost all continents, white campion became particularly widespread in North America. We sequenced the chloroplast genome of S. latifolia subsp. alba from a native range in southeast Fennoscandia. The chloroplast genome of native S. latifolia subsp. alba forms a 151,747-bp circle, has two inverted repeat regions (25,993 bp each), large single copy (82,708 bp), and small single copy (17,106 bp) regions. It contains 77 protein-coding genes, 30 tRNA genes, and four rRNA genes. SSRs and long DNA repeats were identified. Comparison of a newly sequenced plastome of S. latifolia subsp. alba with plastomes of invasive specimens of species from North America and Japan revealed a high level of single nucleotide polymorphisms (SNPs) among them. A total of 214 SNPs were found, among which 110 were identified in intergenic spacers, 74 in exons, and 30 in introns. Intraspecific shifts in inverted repeat boundaries were identified. Our research suggests that high polymorphic regions may be potential molecular markers for population studies and that high intraspecific genetic polymorphism may contribute to a species’ invasive success.

  相似文献   

16.
Summary A physical plastome map was constructed for Citrus aurantium, and the plastomes of species and cultivars of Citrus and of two Citrus relatives were analysed by Southern blot-hybridisation of labelled total tobacco cpDNA to digests of total Citrus DNA. A resemblance was found between the plastomes of cultivars of C. limon (lemon), C. sinensis (orange), C. aurantium (sour orange), C. paradisii (grapefruit) and C. grandis (pomello). The plastomes of other Citrus types such as mandarin (C. reticulata) and citron (C. medico) differed from each other as well as from the plastomes of the aforementioned group. The plastomes of Poncirus trifoliata and Microcitrus sp. are distinct from each other as well as from the Citrus types.  相似文献   

17.
To elucidate the genetic population structure of Pseudogobio esocinus (Cyprinidae) in central Honshu, Japan, we performed phylogeographic analysis based on partial mitochondrial cytochrome b gene sequences. We found not only differentiation of mtDNA lineages between basins (uncorrected p ≈ 2%), presumably associated with uplifting of the Suzuka Mountains in the early Pleistocene, but also more diverged two mtDNA lineages within basins (p ≈ 8%). No evidence of mtDNA introgression from related sympatric species was found. The phylogeographic history of these two lineages should be elucidated by further analysis based on the specimens of P. esocinus from the entire distribution range.  相似文献   

18.
Although plastid genome (plastome) structure is highly conserved across most seed plants, investigations during the past two decades have revealed several disparately related lineages that experienced substantial rearrangements. Most plastomes contain a large inverted repeat and two single-copy regions, and a few dispersed repeats; however, the plastomes of some taxa harbour long repeat sequences (>300 bp). These long repeats make it challenging to assemble complete plastomes using short-read data, leading to misassemblies and consensus sequences with spurious rearrangements. Single-molecule, long-read sequencing has the potential to overcome these challenges, yet there is no consensus on the most effective method for accurately assembling plastomes using long-read data. We generated a pipeline, plastid Genome Assembly Using Long-read data (ptGAUL), to address the problem of plastome assembly using long-read data from Oxford Nanopore Technologies (ONT) or Pacific Biosciences platforms. We demonstrated the efficacy of the ptGAUL pipeline using 16 published long-read data sets. We showed that ptGAUL quickly produces accurate and unbiased assemblies using only ~50× coverage of plastome data. Additionally, we deployed ptGAUL to assemble four new Juncus (Juncaceae) plastomes using ONT long reads. Our results revealed many long repeats and rearrangements in Juncus plastomes compared with basal lineages of Poales. The ptGAUL pipeline is available on GitHub: https://github.com/Bean061/ptgaul .  相似文献   

19.
段春燕  张凯  段义忠 《生物工程学报》2020,36(12):2850-2859
蔷薇科桃属植物长柄扁桃Amygdalus pedunculata Pall.是我国重点发展的12种木本油料作物之一。将自然生长在陕西省榆林市毛乌素沙地的长柄扁桃进行高通量测序、组装得到了GenBank登录号为MG602257的长柄扁桃叶绿体基因组。与NCBI中其他两个长柄扁桃叶绿体基因组 (MG869261和KY101153) 进行序列比对发现:长柄扁桃叶绿体基因组均呈现典型的4分区域结构;基因组序列GC含量均是36.8%;总长度MG602257相似文献   

20.
Liu  Fenxiang  Movahedi  Ali  Yang  Wenguo  Xu  Lei  Xie  Jigang  Zhang  Yu 《Molecular biology reports》2020,47(7):5013-5024

Callistemon rigidus R.Br. one of the traditional Chinese medicinal plants, is acrid-flavored and mild-natured, with the prominent effects reducing swelling, resolving phlegm, and dispelling rheumatism. Clinically, it has been commonly used to treat cold, cough and asthma, pain and swelling from impact injuries, eczema, rheumatic arthralgia. The chloroplast genome study on Callistemon rigidus R.Br. is a few seen. This study demonstrates the data collected from the assembly and annotation of the chloroplast (cp) genome of Callistemon rigidus R.Br., followed by furthers comparative analysis with the cp genomes of closely related species. C. rigidus R.Br. showed a cp genome in the size of 158, 961 bp long with 36.78% GC content, among which a pair of inverted repeats (IRs) of 26, 671 bp separated a large single-copy (LSC) region of 87, 162 bp and a small single-copy (SSC) region of 18, 457 bp. Altogether 131 genes were hosted, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. 284 simple sequence repeats (SSRs) were also marked out. A comparative analysis of the genome structure and the sequence data of closely related species unveiled the conserved gene order in the IR and LSC/SSC regions, a quite constructive finding for future phylogenetic research. Overall, this study providing C. rigidus R.Br. genomic resources could positively contribute to the evolutionary study and the phylogenetic reconstruction of Myrtaceae.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号