首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the changes in root length, mass, and diameter after air drying and rehydration of corn (Zea mays L.) root samples. For corn roots washed from soil, rehydrated root length was not reduced when compared with fresh root length, but rehydrated root mass was reduced to about half of fresh root mass, and rehydrated root diameter was approximately 75% of fresh diameter. Three storage methods (air dried, 70% ethanol, and 5% formaldehyde solution) were also compared for corn roots grown in moist paper towels. Although root mass and diameter were significantly reduced by air drying, root length was not altered by any of the treatments.  相似文献   

2.
《植物生态学报》2016,40(12):1344
The morphology of fine root branching of woody plants is highly variable in their forms and functions. In the past two decades, researchers have increasingly recognized that the root-diameter-based method, using an arbitrary size of root diameter, failed to precisely characterize the physiological and ecological processes involved in finest roots. The number of publications using root-order-based approaches has increased regardless the fact that root trait-measurements based on root order are time-consuming and labor-intensive. A new approach—root functional classification method—was proposed and had been applied in the literature. The functional classification of fine roots separates roots of < 2 mm to absorptive and transport pools, making it more feasible for studies on root biomass and turnover. This new concept redefines fine root guild and has great potentials for future studies. Our literature review of the topic indicates that less is known about the inter-specific differences in estimates of biomass of absorptive and/or transport roots, with a large variation of absorptive roots on global scale. In addition, our review emphasizes the importance in: a) precision estimating of the absorptive biomass of fine roots, and b) proper definition of the range of the transport roots within and among forest ecosystems. Finally, after compare the strengths and weaknesses of the functional classification method, we propose several specific suggestions to improve the applications of this approach.  相似文献   

3.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

4.
Watson  Alex  Phillips  Chris  Marden  Michael 《Plant and Soil》1999,217(1-2):39-47
Information on live root-wood strength, rates of root decay and root growth of both radiata pine (Pinus radiata D. Don) and kanuka (Kunzea ericoides (A. Rich.) Joy Thomps. var. ericoides) are combined to form a generalized conceptual model of changes in nett root reinforcement. The model provides an initial opportunity to rank the plant species having specific below-ground rooting habits that can be used to control erosion, and when linked with extreme flood probability can be used to indicate the risk of a storm likely to cause slope instability in the period between clear-felling and regrowth. Erosion-susceptible slopes planted 1 year after clearfelling in radiata pine at 1250 stems ha-1 regain root site-occupancy in 4.7 years, an interval during which there is an 80% chance of experiencing an extreme flood. Similarly for radiata planted at 800 and 400 stems ha-1, root site-occupancy is regained in 5.6 and 7.5 years, and the probability of occurrence of an extreme event within these periods is 85 and 90%, respectively. For erosion-susceptible slopes on which kanuka has become established, the probability of a significant event within the 2.8 years prior to root site-occupancy is 60%. Slopes felled of radiata pine are potentially more vulnerable to the stresses promoting slope instability, at least in the earlier years. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
6.
小麦种子根的发育解剖   总被引:1,自引:0,他引:1  
小麦胚胎发育过程中通常形成5条幼根(少数可形成6条),这些根统称为种子根,中间最先发生的为初生根.初生根的原基在胚胎发育的早期就在胚轴的一侧发生,原基细胞由不规则到规则排列。侧生种子根的原基在胚胎发育后期才出现,通常成对发生,并且是由胚轴上的节(盾片节和胚芽鞘节)维管束外方的细胞形成。侧生种子根的发育明显较初生根的快,分化能力也较强,后生木质部导管母细胞出现早,数目较多.因此,小麦胚胎发育过程中从胚轴上形成的这些侧生的种子根,形态上,仍应看作是一些不定根,其结构特征与后来形成须根系的不定根的比较近似。  相似文献   

7.
Wheat embryo usually gives rise to five seminal roots in matured caryopsls, although, the sixth root might develop in some cases. The first one is known as the primary root. Primary root emerged early, and its primodium was distinctly originated from the proembryo and could be gradually identified as three layers of initials. Lateral seminal roots emerged later from the embryonic axis in pairs, and originated from the surrouding cells of the procambium. Differentiation of lateral roots was much more vigorous than that of the first seminal root (primary root), and, its mother cells of metaxylem vessel appeared soon, Lateral seminal roots usually had more metaxylem vessels. In short, only the first root is the primary root, the lateral seminal roots are adventitious in nature, since their structures are similar to those of other adventitious roots.  相似文献   

8.
9.
Chopart  J. L.  Siband  P. 《Plant and Soil》1999,214(1-2):61-74
Root length density (RLD) is an important determinant of crop water and nutrient acquisition, but is difficult to measure in the field. On a soil profile, in-situ counts of root impacts per unit surface on soil profiles (NI) can be used to calculate RLD if crop-specific parameters for preferential root orientation (anisotropy) are known. An improved method for field determinations of RLD was developed and validated for maize at sites in Côte d'Ivoire and Burkina Faso. Root anisotropy was measured with cubes of undisturbed soil with 0.1 m sidelength, based on NI observed on three planes oriented perpendicularly to each other. RLD was also measured for the enclosed volume. Repetition of such measurements enabled estimation of the robustness across sites of empirical and geometric models for the relationship between RLD and NI:RLD = NI CO, with CO being the coefficient of root orientation, theoretically equals 2 for an isotropic distribution. Root systems were found to be nearly isotropic, except near the root front (0.3 to 0.5 m), where roots had a preferentially orthotropic orientation. Measured RLD was generally about 50% larger than RLD calculated from observed NI and CO, indicating that at least one of the measurement techniques had a systematic error. The ratio between measured and calculated RLD (CE), which ranged from 0.8 to 2, increased with the age of the plants and decreased with soil depth. CE was therefore introduced as an additional coefficient, resulting in RLD = NI CO CE. The empirical value for CO CE was between 2 and 5. The empirical coefficients CO and CE were the same for the sites in Cote d'Ivoire (oxisol with an iron pan at 0.6 to 0.9 m) and Burkina Faso (alfisol with an iron pan at 0.4 to 0.8 m). The model was validated with independent data sets at both sites, and gave satisfactory predictions of RLD on the basis of NI obtained from single soil planes, which can be easily measured in the field.  相似文献   

10.
相同条件下相同生长期的植物根系生长与适应策略及其差异性还不清楚。因此,采集岷江干旱河谷地区25种乡土植物(木本15/草本10种)的种子于2009年3月播种在同一干旱环境中,9月测定了1年生植株的最大根深(RDmax)、根幅(RW)与根生物量(RB),计算了总根长(TRL)、比根长(SRL)及细/粗根生物量比(RBf/c),分析了它们之间的关系,进行了根系功能组划分。结果表明:1)25种植物1年生植株RDmax与RW变异较小,总变异率为14.9%和20.7%;TRL和SRL变异相对较大,分别为28.5%和34.7%,草本植物SRL明显大于木本植物;RB和RBf/c种间变异较大,总变异率分别为50.1%和70.5%;2)25种植物的RDmax、RW、RB和TRL间呈显著正相关关系,表明根系较深的物种RW较大,TRL和RB也较高;SRL与RDmax呈极显著负相关关系,与RBf/c呈极显著正相关关系,表明根系垂直分布较浅的物种细根发达,SRL较大;3)主成分分析显示,25种植物可分为3个功能组:第1组具有较大RDmax、RW和RB,资源利用持续时间较长;第2组具有较大TRL、SRL和RBf/c,资源利用效率较高;第3组根系功能性状没有一致的突出特点,可能通过降低自身生理机能适应生存条件。综合分析表明,岷江干旱河谷区25种植物1年生植株根系的功能性状变异明显,可塑性大,历经长期自然选择压力而形成了不同的环境适应策略,但生长型并不必然表达出1年生植株根系功能性状的差异性。  相似文献   

11.
Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root respiration correlated positively with root nitrogen concentration (RNC) and negatively with root tissue density (RTD) across and within woody and non‐woody species. However, the relationships between root respiration and specific root length (SRL) and root diameter (RD) were weak or even insignificant. Such root respiration–traits relationships were not completely in line with predictions by the root economics spectrum (RES). Furthermore, the principal component analysis showed that root trait syndrome was multidimensional. Root respiration was associated more strongly with the RNC‐RTD axis (the classical RES) than with the orthogonal SRL‐RD axis for woody species, but not for non‐woody species. Collectively, the linkages of root physiological, chemical, and morphological traits provide a better understanding of root trait covariation and root resource acquisition strategies.  相似文献   

12.
Interactions between Fusarium solani and Phytophthora parasitica or F. solani and P. citrophthora influenced the development of root rot of citrus but depended on the temporal order of inoculation with F. solani or the two Phytophthora spp. Inoculation of citrus with either Fusarium solani and Phytophthora parasitica or Phytophthora citrophthora increased root rot compared to inoculation with P. parasitica or P. citrophthora alone when plants were inoculated with Phytophthora by dipping their roots in zoospore suspensions and subsequently transplanted into soil infested with F. solani. However, root rot was not increased by simultaneous co-inoculation of P. parasitica and F. solani or when plants were inoculated with F. solani first. Root rot was not increased when heat-stressed or non-stressed plants were inoculated with P. parasitica 30 days after transplanting into soil infested with F. solani. In most but not all experiments, F. solani alone reduced growth of tops or roots a small but significant amount.Co-inoculation of citrus by root-dipping into zoospore suspensions of P. parasitica and transplanting into soil infested with F. solani reduced feeder root length by 62% and root weight by 61% but did not significantly reduce the percentage of living roots when compared to inoculation with P. parasitica alone. When citrus roots were immersed in zoospore suspensions of P. citrophthora and transplanted into soil infested with F. solani, feeder root length was reduced by 68%, but feeder root weight and the percentage of living roots were not significantly reduced when compared to plants inoculated with P. citrophthora alone.Propagule densities of both P. parasitica and P. citrophthora in the rhizosphere of plants inoculated by root-immersion and then transplanting into soil infested with F. solani were not significantly different than propagule densities from plants transplanted into non-infested soil. Propagule densities of P. parasitica were suppressed an average of 41% when citrus was inoculated with P. parasitica 30 days after transplanting into soil infested with F. solani and by 41% when citrus was co-inoculated by transplanting into soil infested with both F. solani and P. parasitica.  相似文献   

13.
Abstract

Research into root system morphology over the last two centuries has developed a diverse set of terminologies that are difficult to apply consistently across species and research specialties. In response to a need for better communication, a workshop held by the International Society for Root Research established some nomenclature standards for root research. These standards and their justification are presented in this study. A framework for a root system architectural taxonomy is created by defining four main classes of root: the tap root, that is, the first root to emerge from the seed; lateral roots, which are branches of other roots; shoot‐borne roots, which arise from shoot tissues; and basal roots, which develop from the hypocotyl, that is, the organ which is between the base of the shoot and the base of the tap root. It is concluded that adherence to the presented taxonomy will reduce confusion and eliminate some of the current confounding of results.  相似文献   

14.
不同分类系统下油松幼苗根系特征的差异与联系   总被引:3,自引:0,他引:3       下载免费PDF全文
植物根序和径级不仅反映细根的形态结构, 而且能反映根系的一些生理特征, 如细根寿命和周转等。该文以二年生油松(Pinus tabulaeformis)幼苗根系为研究对象, 系统比较了根序分类方法和径级分类方法在描述根系特征上的优缺点, 探索了两者之间的内在联系。结果表明: 二年生油松幼苗最多可包括6级根序, 直径的变化范围为0.169-3.877 mm。按根序划分, I-VI级根序的总根长和总根表面积主要集中在前3级根序, 这3级根序的根占总根长的78.77%和总根表面积的62.72%。前3级根序的比根长是后3级根序比根长的1.3-3.0倍, 比根面积是后3级比根面积的1.0-1.5倍。按常用的径级(以0.5、1.0、1.5和2.0 mm为阈值)划分方法, 油松幼苗大部分根系直径≤1.5 mm, 此区间细根的根长和根表面积占总根长的93.76%和总根表面积的84.35%。直径≤1.5 mm的细根平均比根长是>1.5 mm细根比根长的3-7倍, 比根面积的1.5-3.0倍。由于油松根序和径级之间有显著的指数关系, 依据径级最大程度反映根序的原则, 提出了新的径级划分方法, 即以0.4、0.8、1.3和2.0 mm为阈值对油松幼苗根系径级重新进行划分。此时, 上述区间可分别包括I级、II级、III级、IV级、V级根序中根尖数的93.22%、86.37%、75.96%、70.47%和76.67%。同时也可分别涵盖各径级根长的89.34%-70.83%、根面积的86.01%-76.12%以及体积的87.73%-76.12%。此时, 根系不同径级与根序之间可以建立起良好的对应关系。这些结果表明, 通过合理划分径级区间可以较好地反映根序 特征。  相似文献   

15.
植物生根的分子机理研究进展   总被引:3,自引:0,他引:3  
随着无性系育种在农林业上的广泛应用,其生根难的问题显得尤为突出。通过查阅相关文献,本文探讨了影响植物根发育的分子机理。从植物激素,主要从生长素调控植物根发育的分子机理;细胞周期相关基因影响植物根发育和与细胞壁形成相关的基因影响植物根发育等方面叙述了目前关于植物根发育的研究进展。并提出了解决研究生根分子机理材料难选择问题的方法。  相似文献   

16.
17.
18.
In-situ root extent measurements by electrical capacitance methods   总被引:8,自引:0,他引:8  
F. N. Dalton 《Plant and Soil》1995,173(1):157-165
A conceptual model is presented that provides a rational basis for using plant root capacitance as an in-situ measurement for assessing plant root development. This method is based on measuring the electricla capacitance of an equivalent parallel resistance-capacitance circuit formed by the interface between soil-water and the plant root surface. Nutrient solution studies using tomato (Lycopersicon esculentum Mill.) showed a good correlation between plant root capacitance and root mass. Stage of development studies showed plant root capacitance measurements capable of detecting root development rate and suggested the method to be sensitive to root function. Soil water content was shown to have a significant effect on plant root capacitance measurement. The possibility of using this technique to assess relative root function is discussed. Positioning of the plant shoot electrode was shown to also have a significant effect on measurement of plant root capacitance, demonstrating the need for using consistent measurement techniques. The electrical capacitance method shows considerable promise. More research is needed before it can be used routinely.  相似文献   

19.
The objective of this work was to describe the relationship between elongation rate and diameter of maize roots and to estimate the length and growth duration of lateral roots of maize. Diameters and elongation rates of roots were measuredin situ on plants grown 5 weeks in small rhizotrons under greenhouse conditions. At the end of the experimental period the roots were harvested and diameters of axile and lateral roots were measured. The frequency distribution of diameters of harvested roots was bimodal with a minimum at 0.6 mm; 97% of axile roots were larger than this value and 98% of the lateral roots were smaller. Root elongation per day increased as diameter increased but the slope of the relationship with lateral roots was about 2.5 times that with axile roots when separate linear regressions were fitted to the two populations. The length of lateral roots found on axillary roots between the base and about 30 cm from the apex was approximately 2.2 cm. All of the data was consistent with the hypothesis that the lateral roots grew for about 2.5 days and then ceased growing. The axillary roots continued to grow throughout the experimental period at a rate of about 3 cm day−1. Contribution from the Department of Agronomy, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853. Agronomy paper No. 1661. This research is part of the program of the Center for Root-Soil Research.  相似文献   

20.
* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号