首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A realistic model of foraging behaviour in stream-living rainbow trout was developed to address some shortcomings of previous tests of optimal foraging theory. The model predicts prey selection based upon both energy-maximization and number-maximization strategies. Trout diet selection on the basis of prey size and prey calorific content was examined under laboratory conditions.
Diet composition was strongly influenced by relative abundance of prey types under all feeding regimes, as predicted by the model. Additional important factors include fish stomach capacity and daily digestive capacity. Experimental results strongly suggest that prey selection in rainbow trout is not based on calorific content. Examination of energy (kJ) obtained from observed diets showed no energy penalties associated with 'suboptimal' food choices, since all fish (regardless of their choices) consumed far more energy than required for their basic metabolic needs.  相似文献   

2.
The nature of prey selection by two centrarchids (white crappie and bluegill) is presented as a model incorporating optimal foraging strategies. The visual field of the foraging fish as represented by the reactive distance is analysed in detail to estimate the number of prey encounters per search bout. The predicted reactive distances are compared with experimental data. The energetic cost associated with fish foraging behaviour is calculated based on the sequence of events that takes place for each prey consumed. Comparisons of the relative abundance of prey species and size categories in the stomach to the lake environment indicated that both white crappie and bluegill (length < 100 mm) strongly select prey utilising an energy optimization strategy. In most cases, the fish exclusively selected large Daphnia ignoring evasive prey types (Cyclops, Diaptomids) and small cladocera. This selectivity is the result of fish actively avoiding prey with high evasion capabilities even though they appear to be high in energetic content and having translated this into optimal selectivity through capture success rates. The energy consideration and visual system, apart from the forager's ability to capture prey, are the major determinants of prey selectivity for large-sized bluegill and white crappie still at planktivorous stages.  相似文献   

3.
Most skinks are opportunistic predators, taking available prey from the environment as it is encountered. Variation in their diet composition is thought to reflect differences in prey abundance in the environment. We studied diet composition and prey selection in a community of three sympatric skink species (genus Carlia) in northern Australia by comparing contents of skink stomachs with arthropod prey available in their habitat. Carlia were entirely carnivorous and fed on a range of arthropod prey. We found high overlap in diet and prey size among the three species and between the wet and dry seasons, but found that skinks generally focused their foraging efforts on prey types and prey sizes that were not abundant in the habitat. Spiders (Aranea), orthopterans, blattarians, isopods and termites (Isoptera) were important prey of skinks, but these arthropods were rarely trapped in the environment. Skinks also frequently consumed large‐bodied prey, despite the higher relative abundance of small prey in the environment. Skinks were more selective in their foraging and diet than previously assumed. Selection of prey by consumers is a fundamental ecological process, important to consumers for maintaining energy requirements to grow and reproduce, but equally important to the community dynamics of the prey consumed.  相似文献   

4.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

5.
The foraging behaviour of planktivorous pikeperch Sander lucioperca during their first growing season was analysed. Field data showed that S. lucioperca feed on extremely rare prey at the end of the summer, suggesting the presence of a bottleneck. In experiments, foraging ability of planktivorous S. lucioperca was determined when fish were feeding on different prey types (Daphnia magna or Chaoborus spp.) and sizes (D. magna of lengths 1 or 2·5 mm) when they occurred alone. From these results, the minimum density requirement of each prey type was analysed. The energy gain for three different foraging strategies was estimated; a specialized diet based on either large D. magna or Chaoborus spp. or a generalist diet combining both prey types. Prey value estimates showed that Chaoborus spp. should be the preferred prey, assuming an energy maximizing principle. In prey choice experiments, S. lucioperca largely followed this principle, including D. magna in the diet only when the density of the Chaoborus spp. was below a threshold value. Splitting the foraging bout into different sequences, however, resulted in a somewhat different pattern. During an initial phase, S. lucioperca captured both prey as encountered and then switched to Chaoborus spp. if prey density was above the threshold level. The prey selection observed was mainly explained by sampling behaviour and incomplete information about environmental quality, whereas satiation only had marginal effects. It was concluded that the observed diet based on rare prey items was in accordance with an optimal foraging strategy and may generate positive growth in the absence of prey fish in suitable sizes.  相似文献   

6.
The relative abundance and size of prey fish in the stomachs of the predator Acestrorhynchus pantaneiro were compared with those recorded in the field to estimate prey selection. Fish samples were taken monthly in the Manso Reservoir (State of Mato Grosso, Brazil) immediately after the impoundment, from March 2000 to February 2001 (period I) and from March 2003 to February 2004 (period II). In period I, the small relative dominance of the prey in the environment seemed to have lead to random foraging. In period II, however, when the forage fish Moenkhausia dichroura was dominant in the environment, the predator shifted its diet, foraging mainly on this prey. Species with short relative body depth were positively selected. The prey size classes between 30 and 49 mm, and 50 and 69 mm standard length ( L S) were the most abundant in the environment. Small prey were predominantly selected by A. pantaneiro . Even when a given prey or prey size was predominant in the environment, A. pantaneiro was a selective predator and maintained its preferences associated to prey type and L S, although it consumed the most abundant resource.  相似文献   

7.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

8.
9.
Summary We examined variation in diet choice by marten (Martes americana) among seasons and between sexes and ages from 1980–1985. During this period prey populations crashed simultaneously, except for ruffed grouse (Bonasa umbellus) which was common at the beginning and end of the study, and masked shrews (Sorex cinereus) which were abundant in 1983. Marten were catholic in selection of prey and made use of most available mammalian prey, ruffed grouse, passerine birds, berries, and insects. Diet niche was widest during the latter three years when prey was scare, particularly in late winter. Diet niche breadth was negatively correlated with abundance of all common prey species. Proportion of small prey species in the diet was correlated with absolute abundance of those species, but proportion of some large prey was related to their relative abundance. Diet choice varied among years and among seasons. Berries and insects were common in summer diets while large prey, particularly varying hare (Lepus americanus), were more frequent in winter diet than in summer diet. We found little evidence that any small mammal species was a preferred prey. Sexual size dimorphism between the sexes did not affect prey choice, nor did age. Reduced foraging effort in winter resulted in a wider diet niche only when prey was scarce. The only prediction of optimal foraging models fully supported by our data was a wider diet niche with reduced prey abundance. However, among the three most profitable prey species choice was dependent on the absolute abundance of the most profitable type (varying hare). We suggest that marten primarily forage for large prey but employ a strategy which results in encounters with small prey as well. These small prey are eaten as they provide energy at minimal cost, between captures of large prey.  相似文献   

10.
The seasonal diet of a predator, brown trout Salmo trutta [total length ( L T) 17–69 cm] and simultaneous density and size‐structure of prey populations, vendace Coregonus albula and smelt Osmerus eperlanus (4–16 cm L T), in a large boreal lake were analysed and compared in 2001 and 2002. The upper L T limit for consumed prey was c . 40% of the predator L T. All brown trout, however, preferred small (<10 cm L T) and avoided large (≥10 cm L T) prey. The results also suggested that equal densities of similar‐sized (4–10 cm L T) fish of the two prey species led to random foraging on these species by brown trout, but if either one of the prey species predominated (>50%) in the lake, brown trout shifted to foraging on this species almost exclusively. Brown trout diets thus reflected the density dynamics of the two alternative prey species.  相似文献   

11.
Intake rate maximization alone is not always sufficient in explainingprey size selection in predators. For example, bivalve-feedingoystercatchers regularly select smaller prey than expected ifthey aimed to maximize their intake rate. It has been proposedthat to these birds large prey are "risky," in the sense thatbirds may damage their bills when feeding on large bivalves.Large bivalves yield more energy, but according to this hypothesisthis is achieved at the expense of energy yield in the longterm when (1) the risk of bill damage increases with prey sizeand (2) foraging with a damaged bill is less effective. In accordancewith this hypothesis, we show that captive oystercatchers feedingon large cockles experienced a high probability of bill tipdamage, while bill damage was absent when cockles were small.Moreover, among free-living oystercatchers the prevalence ofbill damage was correlated with mean cockle size near the capturesite, and the data on captive birds fit in this pattern. Foodintake of captive oystercatchers feeding exclusively on cockleswas reduced by 23% after bill damage, and free-living birdswith damaged bills had 14 g lower mass. Because lower body masswas associated with higher mortality probability, these resultsindicate long-term costs associated with feeding on large cockles.We conclude that the risk of bill damage can potentially explainwhy oystercatchers avoid large bivalves and that oystercatchersmay maximize long-term intake rate by selecting prey sizes thatare "suboptimal" from a short-term rate-maximizing point ofview.  相似文献   

12.
Prey selection behaviour of three-spined sticklebacks, Gasterosteus aculeatus L., was studied in two experiments. Where possible, the experimental apparatus satisfied the assumptions of the simplest optimal diet model (the basic prey model); prey were presented sequentially, the fish could not search for and handle prey at the same time, and net energy gain, handling time and encounter rate were fixed. Experiment 1 presented fish with a range of Asellus sizes so that pursuit ( p ) and handling ( h ) time could be related to prey size. Published energy values of Asellus together with pursuit and handling times were used to calculate E /( p+h ) for Asellus measuring 3,4,5,6,7 and 9 mm. Pursuit times did not differ with prey size but handling times did. E /( p+h ) was very variable particularly at the larger prey sizes. Experiment 2 presented fish with two sequences of prey differing in the encounter rate with the most profitable prey sizes. Fish did not select the diet predicted by the basic prey model tending to always ignore the largest prey even when net energy gain would have been maximized by including them in the diet. Further analysis showed that the probability of a prey size being taken was a function of prey size, fish stomach fullness and encounter rate. It is concluded that the basic prey model is too simple to capture the behaviour of the fish. One of its main faults is that the changing state of the fish through the feeding bout is ignored.  相似文献   

13.
Behaviours related to foraging and feeding in predator–prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gobies are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions.  相似文献   

14.
Over a number of decades the process of prey choice has been investigated using fishes as model predators. Using fishes for the model has allowed the proximate factors that determine how a mobile predator finds and chooses to eat the prey encountered within a variable 3‐D environment to be estimated. During prey choice a number of constraints exist, in particular most fish predators will eat their prey whole thus their jaws and gut create functional limitations once a prey has been attacked. By considering the relationship between the size of the prey and the predator's feeding apparatus and feeding motivation this study explores the link between mechanistic studies and theoretical, optimal foraging based predictions. How the prediction of prey choices made by the fish following prey encounter can be reconciled with what is likely to be found in the fish's stomach is discussed. This study uses a progression of empirical examples to illustrate how the limits of functional constraints and prey choice at different stages of motivation to feed can be taken into account to improve predictions of predator prey choice.  相似文献   

15.
This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man‐made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology.  相似文献   

16.
When a three-spined stickleback Gasterosteus aculeatus encountered prey simultaneously the probability of hanging and the median pursuit time were greater than when prey were encountered sequentially. During simultaneous prey encounter fish did not choose to attack the more profitable prey but instead the nearer prey was handled first except when the difference between the two prey sizes was large. No difference was found in the level of total energetic intake by the fish regardless of prey size pairing. Fish that handled and ate the first prey of a pair in <5 s attacked the second prey with a high probability of success, demonstrating an opportunistic feeding strategy. Importantly however, the fish did not choose to maximize long term energy intake rate by eating both prey, but rather short-term considerations over the course of feeding took precedence. With an empty stomach, the probability of a fish eating ( P eat) the first prey handled was high regardless of prey size. As stomach fullness increased, the P eat the first prey handled decreased if it was the larger prey. Hence, the fish were unselective when the stomach was empty but thereafter there was a shift in preference towards the smaller prey. The decision of which prey to attack and eat appeared to be based on short-term energy considerations and the level of stomach fullness. This study demonstrates that feeding on a short-term scale is a crucial factor to take account of when analysing fish feeding during simultaneous prey encounter.  相似文献   

17.
Food availability can strongly affect predator-prey dynamics. When change in habitat condition reduces the availability of one prey type, predators often search for other prey, perhaps in a different habitat. Interactions between behavioural and morphological traits of different prey may influence foraging success of visual predators through trait-mediated indirect interactions (TMIIs), such as prey activity and body coloration. We tested the hypothesis that foraging success of stream-dwelling cutthroat trout (Onchorhyncus clarki) on cryptically coloured, less-active benthic prey (larval mayfly; Paraleptophebia sp.) can be enhanced by the presence of distinctly coloured, active prey (larval stonefly shredder; Despaxia augusta). Cutthroat trout preyed on benthic insects when drifting invertebrates were unavailable. When stonefly larvae were present, the trout ate most of the stoneflies and also consumed a higher proportion of mayflies than under mayfly only treatment. The putative mechanism is that active stonefly larvae supplied visual cues to the predator that alerted trout to the mayfly larvae. Foraging success of visual predators on cryptic prey can be enhanced by distinctly coloured, active benthic taxa through unidirectional facilitation to the predators, which is a functional change of interspecific interaction caused by a third species. This study suggests that prey-predator facilitation through TMIIs can modify species interactions, affecting community dynamics.  相似文献   

18.
Jaguars Panthera onca inhabiting tropical or subtropical evergreen moist forest have often been classified as opportunistic predators because they consume prey relative to its availability. However, these studies failed to address simultaneously the distribution of predator and prey through time and space, which may lead to an incomplete or erroneous understanding of jaguar foraging strategies. In this study, we reconstructed jaguar diet from scat, and used camera traps to investigate jaguar prey availability and the distribution of jaguar and its prey through space and time. We focused our examination of predator–prey temporal and spatial relations on forest infrastructure comprising man-made paths, small mammal trails, tapir Tapirus bairdi trail and trail-less, forested areas as they represent distinct habitats for prey selection. Overall, we observed high overlap between the prey used and available, suggestive of opportunistic foraging. However, jaguars exhibited selective tendencies in discriminating between larger prey. Jaguars used collared peccary Tayassu tajacu greater than its availability, while preying upon the equally abundant and similarly distributed white-lipped peccary Tayassu pecari and tapir less than predicted based upon availability. Armadillo Dasypus novemcinctus and paca Agouti paca , 56.6% of total consumption, were consumed relative to availability but exhibited low spatial overlap with jaguar. Armadillo and paca used trail-less, forested areas and small mammal trails not used by jaguar and were photographed more frequently at greater distances from man-made paths, major thoroughfares for jaguars. This study suggests that although forest jaguars use prey relative to its abundance, jaguars may rely on foraging strategies other than chance encounters for exploiting prey.  相似文献   

19.
Synopsis Fish larvae are selective planktivores, and size is an important factor in prey selection. However, for herring larvae, a selection model based solely on the principle of optimising calorific gain per unit energy expenditure consistently overestimates the mean size of ingested prey. Most such models ignore the escape capabilities and shape of the prey, and the potential role of escape on capture success. In this paper, a static foraging model incorporating both selection and escape is described and tested against published data on the composition of herring larvae stomach contents. The results indicate that prey escape is a major factor structuring the diet composition of the larvae.  相似文献   

20.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号