首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Tef [Eragrostis tef (Zucc)Trotter] is one of the most important cereal crops in Ethiopia. It is an allotetraploid species with a genome size of 720 Mbp. In this paper we report results of genetic linkage-map construction for E. tef using tef and heterologous cDNA probes for the first time. One hundred and sixteen F8 recombinant inbred lines (RILs) from the cross E. tef cv Kaye Murri×Eragrostis pilosa (accession30–5) were used for mapping. Parental lines were digested with nine restriction enzymes and screened using 159 tef cDNA and 162 heterologous probes including the grass genome anchor probes. The polymorphism level between parental lines was 66.9%. One hundred and thirty nine polymorphic probes were hybridized against 116 RILs. Both the tef and the heterologous probes hybridized well against tef genomic DNA. The linkage map defined 1,489 cM of the tef genome comprising 149 marker loci distributed among 20 linkage groups. The average interval between markers was 9.99 cM. A fraction (14.8%) of the markers deviated significantly from the expected segregation. Such a genetic linkage map is useful for tagging economically useful genes in tef because a wide range of agronomically important traits is segregating within this population. This would enable the use of a marker assisted breeding strategy which, in turn, will enhance breeding efficiency. Alignment of the tef RFLP map with the rice RFLP map indicates that a number of syntenic chromosomal fragments exist between tef and rice in which the gene order was for the most part collinear. The comparative mapping information should enable tef scientists to take advantage of whatever genetic progress is made on the cereal model species rice. Received: 9 June 2000 / Accepted: 31 August 2000  相似文献   

2.
Two separate genetic linkage maps for Chinese silver birch based on inter-simple sequence repeat (ISSR) and amplified fragment-length polymorphism (AFLP) were constructed by a pseudo-testcross mapping strategy. Eighty F1 progenies were obtained from the cross between two parental trees with desirable traits (the paternal one selected from ‘Qinghai’ and the maternal one from ‘Wangqing’). A total of 46 ISSR primers and 31 AFLP primers were employed to generate 102 ISSR and 355 AFLP polymorphic markers in the F1 progenies. About 5.7% of all the markers displayed high segregation distortion with a P value below 0.01 and such markers were not used for map constructions. The paternal map consisted of 137 loci, spread over 13 groups and spanned 694.2 cM at an average distance of 5.1 cM between the markers, while in the maternal map, 147 loci were distributed in 14 groups covering a map distance about 949.62 cM at an average distance of 6.5 cM. These initial maps can serve as the basis for developing a more detailed genetic map.  相似文献   

3.
Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4x = 40) and a genome size of 730 Mbp. Ninety-four F9 recombinant inbred lines (RIL) derived from the interspecific cross, Eragrostis tef cv. Kaye Murri × Eragrostis pilosa (accession 30-5), were mapped using restriction fragment length polymorphisms (RFLP), simple sequence repeats derived from expressed sequence tags (EST–SSR), single nucleotide polymorphism/insertion and deletion (SNP/INDEL), intron fragment length polymorphism (IFLP) and inter-simple sequence repeat amplification (ISSR). A total of 156 loci from 121 markers was grouped into 21 linkage groups at LOD 4, and the map covered 2,081.5 cM with a mean density of 12.3 cM per locus. Three putative homoeologous groups were identified based on multi-locus markers. Sixteen percent of the loci deviated from normal segregation with a predominance of E. tef alleles, and a majority of the distorted loci were clustered on three linkage groups. This map will be useful for further genetic studies in tef including mapping of loci controlling quantitative traits (QTL), and comparative analysis with other cereal crops.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

4.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

5.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

6.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

7.
AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection. Received: 13 July 2000 / Accepted: 19 January 2001  相似文献   

8.
AFLP and CAPS linkage maps of Cryptomeria japonica   总被引:7,自引:0,他引:7  
We have used two DNA marker systems, AFLP and CAPS, in a two-way pseudo-testcross strategy applied to an F1 population to construct genetic linkage maps of two local sugi cultivars. The AFLP markers detected about eight polymorphisms per parent per primer combination. Using 38 primer combinations, 612 AFLPs were detected in ’Haara 4’ and ’Kumotooshi’, of which 305 segregated in a 1:1 ratio (P>0.05). A total of 91 markers (83 AFLP and 8 CAPS) in ’Haara 4’ and 132 (123 AFLP and 9 CAPS) in ’Kumotooshi’ were distributed among 19 and 23 linkage groups, respectively, each of which included 2–17 markers. Maps of ’Haara 4’ and ’Kumotooshi’ spanned 1266.1 cM and 1992.3 cM, and covered approximately 50% and 80% of the sugi genome, respectively. Sequences derived from cDNA, which were previously used to construct a sugi linkage map, were also placed on our linkage maps as CAPS markers. Where a ’two-way pseudo-testcross’ is used, more than half of the sugi CAPS developed can be used to construct linkage maps for each parental family. The saturation of mapped markers, and the integration of several linkage maps derived from different mapping populations, is anticipated in the near future. Received: 15 August 1999 / Accepted: 27 August 1999  相似文献   

9.
To establish a molecular‐marker‐assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular‐marker‐assisted breeding for Laminaria.  相似文献   

10.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.  相似文献   

11.
Velvetbean (Mucuna sp., n=11), a self-pollinated species, is an important legume used in tropical agricultural systems in rotation with other crops for nematode management and/or soil improvement. A genetic map of velvetbean was constructed in order to identify potential molecular markers linked to important morphological and agronomic traits that would be particularly useful for developing and improving the species. Traits such as seed coat color, pod color, and pod pubescence were among the main parameters observed in a process of genetic diversity estimation. Two slightly divergent velvetbean accessions, PI364362 and Edgar Farm White, a land race from Alabama, were used to make an intraspecific F1 hybrid. Amplified fragment length polymorphism analysis (AFLP) detected an average of six polymorphic fragments per primer pair between the two parents. As expected for dominant markers, the sum of all AFLP bands from both parents was generally observed to be present in the AFLP profiles of the F1 progeny, indicating full penetrance and the dominant nature of AFLP markers. An F2 population was generated by self-pollinating a single F1 plant. Using 37 AFLP primer pairs, we detected 233 polymorphic markers of which 164 (70.4%) segregated in 3:1 Mendelian ratios, while the remaining 69 (29.6%) both segregated and were scorable. The genetic linkage map constructed from this population comprised 166 markers, including two morphological traits (pod color and pod pubescence). Twenty linkage groups were found with an average distance between markers of 34.4 cM, covering a total of 687.9 cM. The linkage groups contained from 2 to 12 loci each and the distance between two consecutive loci ranged from 0 to 21.8 cM. The newly designated morphological traits pod color (pdc) and pod pubescence (pdp) co-segregated with each other at a distance of 4.2 cM. Two DNA markers designated ACGCAG2 and ACTCTG1 were located in the same group as pdc and pdp. The AFLP linkage map provides opportunities for use in marker-assisted selection and in the detection of loci controlling morphologically important traits.Communicated by J. Dvorak  相似文献   

12.
 An AFLP genetic linkage map of flax (Linum usitatissimum) was used to identify two quantitative trait loci (QTLs) on independent linkage groups with a major effect on resistance to Fusarium wilt, a serious disease caused by the soil pathogen Fusarium oxysporum (lini). The linkage map was constructed using a mapping population from doubled-haploid (DH) lines. The DH lines were derived from the haploid component of F2 haploid-diploid twin seed originating from a cross between a polyembryonic, low-linolenic-acid genotype (CRZY8/RA91) and the Australian cultivar ‘Glenelg’. The AFLP technique was employed to generate 213 marker loci covering approximately 1400 cM of the flax genome (n=15) with an average spacing of 10 cM and comprising 18 linkage groups. Sixty AFLP markers (28%) deviated significantly (P<0.05) from the expected segregation ratio. The map incorporated RFLP markers tightly linked to flax rust (Melamspora lini) resistance genes and markers detected by disease resistance gene-like sequences. The study illustrates the potential of the AFLP technique as a robust and rapid method to generate moderately saturated linkage maps, thereby allowing the molecular analysis of traits, such as resistance to Fusarium wilt, that show oligogenic patterns of inheritance. Received: 8 December 1997 / Accepted: 7 April 1998  相似文献   

13.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

14.
A mapping referential family (F1) of ayu was produced by crossing a normal diploid male with a homozygous clonal female. A genetic linkage map was constructed using 191 amplified fragment length polymorphism (AFLP) and 4 microsatellite DNA markers. A total of 178 loci were mapped in 36 linkage groups comprising 1659.6 cM, which includes approximately 77.3% to 81.8% of the total genome. As the markers were randomly distributed over the genome, they showed high efficiency for the construction of a wide linkage map.  相似文献   

15.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

16.
An RFLP genetic linkage joinmap was constructed from four different mapping populations of cotton (Gossypium hirsutum L.). Genetic maps from two of the four populations have been previously reported. The third genetic map was constructed from 199 bulk-sampled plots of an F2.3 (HQ95–6×’MD51ne’) population. The map comprises 83 loci mapped to 24 linkage groups with an average distance between markers of 10.0 centiMorgan (cM), covering 830.1 cM or approximately 18% of the genome. The fourth genetic map was developed from 155 bulk-sampled plots of an F2.3 (119– 5 sub-okra×’MD51ne’) population. This map comprises 56 loci mapped to 16 linkage groups with an average distance between markers of 9.3 cM, covering 520.4 cM or approximately 11% of the cotton genome. A core of 104 cDNA probes was shared between populations, yielding 111 RFLP loci. The constructed genetic linkage joinmap from the above four populations comprises 284 loci mapped to 47 linkage groups with the average distance between markers of 5.3 cM, covering 1,502.6 cM or approximately 31% of the total recombinational length of the cotton genome. The linkage groups contained from 2 to 54 loci each and ranged in distance from 1.0 to 142.6 cM. The joinmap provided further knowledge of competitive chromosome arrangement, parental relationships, gene order, and increased the potential to map genes for the improvement of the cotton crop. This is the first genetic linkage joinmap assembled in G. hirsutum with a core of RFLP markers assayed on different genetic backgrounds of cotton populations (Acala, Delta, and Texas plain). Research is ongoing for the identification of quantitative trait loci for agronomic, physiological and fiber quality traits on these maps, and the identification of RFLP loci lineage for G. hirsutum from its diploid progenitors (the A and D genomes). Received: 23 February 2001 / Accepted: 8 June 2001  相似文献   

17.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

18.
Field resistance to cyst nematode (SCN) race 3 (Heterodera glycines I.) in soybean [Glycine max (L.) Merr.] cv ’Forrest’ is conditioned by two QTLs: the underlying genes are presumed to include Rhg1 on linkage group G and Rhg4 on linkage group A2. A population of recombinant inbred lines (RILs) and two populations of near-isogenic lines (NILs) derived from a cross of Forrest×Essex were used to map the loci affecting resistance to SCN. Bulked segregant analysis, with 512 AFLP primer combinations and microsatellite markers, produced a high-density genetic map for the intervals carrying Rhg1 and Rhg4. The two QTLs involved in resistance to SCN were strongly associated with the AFLP marker EATGMCGA87 (P=0.0001, R2=24.5%) on linkage group G, and the AFLP marker ECCGMAAC405 (P=0.0001, R2 =26.2%) on linkage group A2. Two- way analysis of variance showed epistasic interaction (P=0.0001, R2 =16%) between the two loci controlling SCN resistance in Essex×Forrest recombinant inbred lines. Considering the two loci as qualitative genes and the resistance as female index FI <5%, jointly the two loci explained over 98% of the resistance. The locations of the two QTLs were confirmed in the NILs populations. Therefore SCN resistance in Forrest×Essex is bigenic. High-efficiency marker-assisted selection can be performed using the markers to develop cultivars with stable resistance to SCN. Received: 5 November 2000 / Accepted: 23 January 2001  相似文献   

19.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

20.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号