首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生境片段化对蜘蛛群落有着重要影响,目前这方面的研究较少,多集中于不同植被类型间蜘蛛群落的比较研究。在千岛湖片段化景观中选取16个陆桥岛屿,从2010年春季到2011年秋季,按季度(春、夏、秋季)6次采用Winkler法收集蜘蛛标本,分析其物种多度、多样性、季节动态和功能群差异,并对不同大小岛屿上蜘蛛的功能群的多度以及功能群比例差异进行单因素方差分析。结果表明:共收集到蜘蛛标本3503头,用于统计分析的成蛛1438头,归属于30科82种,其中幽灵蛛科(Spermophora)、管巢蛛科(Clubionidae)、螲蟷科(Ctenizidae)、蟹蛛科(Thomisidae)分别占总数的7.37%、6.61%、5.84%、5.29%,螲蟷科(Ctenizidae)在16个岛屿上均有分布。Shannon-Wiener指数在不同季节间差异显著(P0.05),物种丰富度在秋季最高。在功能群上,伏击型蜘蛛的多度最高,其次为游猎型蜘蛛,结圆网型蜘蛛多度最低,穴居型蜘蛛的多度与其他各功能群呈显著差异(P0.05);游猎型蜘蛛与伏击型蜘蛛的多度均显著高于结皿网型蜘蛛与结圆网型蜘蛛(P0.05);蜘蛛的各功能群数量在小岛与大岛这两种不同的岛屿类型上表现出显著差异,小岛上伏击型蜘蛛的物种数显著高于大岛上的物种数;比例上,结皿网型蜘蛛和伏击型蜘蛛在小岛上占功能群总体数目的比例显著低于大岛上的比例(P0.05),小岛上的游猎型蜘蛛占功能群总体数目的比例显著高于大岛上的比例(P0.05),结圆网型蜘蛛与穴居型蜘蛛在不同类型的岛屿间不存在显著差异。总体而言,秋季蜘蛛物种丰富度最高,蜘蛛的多样性与季节相关;生境片段化对蜘蛛功能群的分布产生了一定影响。  相似文献   

2.
The flux of emerging aquatic insects from streams can provide a significant energy subsidy to riparian web-building spiders. However, despite the high temporality of aquatic insect emergence, the effects of such aquatic insect dynamics on spider distribution are poorly understood. To examine the relationship, the aquatic insect flux from a headwater stream in a northern Japanese deciduous forest was experimentally manipulated by using a greenhouse-type covering, during May to July. Under natural conditions, the aquatic and terrestrial insect abundances dramatically decreased and increased from May through July, respectively. The experimental reduction of aquatic insect flux depressed the density of horizontal orb weavers (Tetragnathidae) in both May and June, but not in July when aquatic insects were scarce, indicating a temporal limitation on spider distribution by aquatic insect flux. In contrast, the densities of both vertical orb weavers (Araneidae) and sheet weavers (Linyphiidae) were unaffected by the manipulation throughout the study period. These various responses, differing among months or spider guilds, may be attributed to the degree of specialization for aquatic prey in the spiders and their mobility in response to aquatic insect flux. The experimental results provided direct evidence that the temporal dynamics of aquatic insect flux, as well as spider characteristics, were primary factors determining the distributional patterns of riparian web-building spiders.  相似文献   

3.
In order to study the tempo and the mode of spider orb web evolution and diversification, we conducted a phylogenetic analysis using six genetic markers along with a comprehensive taxon sample. The present analyses are the first to recover the monophyly of orb-weaving spiders based solely on DNA sequence data and an extensive taxon sample. We present the first dated orb weaver phylogeny. Our results suggest that orb weavers appeared by the Middle Triassic and underwent a rapid diversification during the end of the Triassic and Early Jurassic. By the second half of the Jurassic, most of the extant orb-weaving families and web designs were already present. The processes that may have given origin to this diversification of lineages and web architectures are discussed. A combination of biotic factors, such as key innovations in web design and silk composition, as well as abiotic environmental changes, may have played important roles in the diversification of orb weavers. Our analyses also show that increased taxon sampling density in both ingroups and outgroups greatly improves phylogenetic accuracy even when extensive data are missing. This effect is particularly important when addition of character data improves gene overlap.  相似文献   

4.
Insect silks have been used by mankind for millennia to produce textiles and in particular, the cocoon silk of Bombyx mori was the base of one of the most important industries in history. In fact, B. mori is probably the only domesticated insect if not invertebrate in its true and strict sense, comparable to cattle and other livestock that humans have known and bred since the Neolithic period. In contrast, reports regarding the use of spider silk throughout history have the character of travellers’ tales or anecdotes, and serious attempts to exploit these biomaterials on a large scale have not been undertaken until recently. Indeed, the cannibalism of these carnivores makes their farming difficult and the production of significant yields of spider silk virtually impossible. Only today, with recombinant technologies available, does this problem seem to have been overcome. But why use spider silk at all – if we have the infrastructure to produce significant yields of silk from Bombyx? In contrast to most insects, spiders do not spin from labial glands, and many spiders possess different types of gland, most of them active throughout the whole lifespan. Typical orb‐weavers (Araneoidea) for instance possess up to seven different types of silk gland to produce different silk fibers and glues. Each of these products has evolved for a particular use and the respective material properties are highly adapted to that use. As the group of Araneae is about 400 million years old, the oldest fossil orb‐weaver is dated about 150 million years, and the use of silk is crucial to a spider's survival, we can expect that evolution will have “squeezed out every iota” to achieve optimum performance at minimum cost. Indeed, some dragline silks such as the major ampullate silks of some Nephila species show amazing mechanical properties that, in terms of toughness, are far superior to Bombyx silk. Labels like “stronger than steel” or “even better than Kevlar” were attached to them, and the Canadian‐based biotech company Nexia created the trademark “bio‐steel” for their prospective product. The discovery of these exceptional mechanical properties of those protein fibers triggered intense research on spider silk, with the goal of their commercial exploitation. But there is more to Arachne's weave and science is beginning to pick up those threads.  相似文献   

5.
Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb‐like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechridae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia's exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo‐orb versus their independent origins, a potentially spectacular case of behavioural convergence. We also discuss the implications of our results for Entelegynae systematics. Our results firmly place a monophyletic Psechridae within the RTA clade, phylogenetically distant from true orb weavers. The architectural similarities of the orb and the pseudo‐orb are therefore clearly convergent, as also suggested by detailed comparisons of these two web types, as well as the spiders' web‐building behaviours and ontogenetic development. The convergence of Fecenia webs with true orbs provides a remarkable opportunity to investigate how these complex sets of traits may have interacted during the evolution of the orb.  相似文献   

6.
In Chile, all necrotic arachnidism is attributed to the Chilean recluse spider Loxosceles laeta (Nicolet) (Araneae: Sicariidae). It is predated by the spitting spider Scytodes globula (Nicolet) (Araneae: Scytodidae). The biology of each of these species is not well known and it is important to clarify their distributions. The aims of this study are to elucidate the variables involved in the niches of both species based on environmental and human footprint variables, and to construct geographic maps that will be useful in estimating potential distributions and in defining a map of estimated risk for loxoscelism in Chile. Loxosceles laeta was found to be associated with high temperatures and low rates of precipitation, whereas although S. globula was also associated with high temperatures, its distribution was associated with a higher level of precipitation. The main variable associated with the distribution of L. laeta was the human footprint (48.6%), which suggests that this is a highly invasive species. Similarly to other species, the distribution of L. laeta reaches its southern limit at the Los Lagos region in Chile, which coincides with high levels of precipitation and low temperatures. The potential distribution of L. laeta in Chile corresponds to the distribution of cases of loxoscelism.  相似文献   

7.
We observed the first case of host‐behavioral manipulation of an orb‐weaver spider Argiope argentata induced by a parasitoid wasp of the genus Acrotaphus. The modified web is similar of those constructed by other orb weavers attacked by wasps of the close related genus Hymenoepimecis. The stick spirals and radii are absent and the web is composed of a three‐dimensional structure of non adhesive threads. The discovery of the ability to induce changes in host's web‐building behavior in Acrotaphus is indicative that this trait may be primitively present in the clade that includes the genus Hymenoepimecis.  相似文献   

8.
蜘蛛位置对成功捕获猎物和球型网图案的影响   总被引:3,自引:0,他引:3  
静坐在球型网的中心,蜘蛛可能遭受天敌的攻击并暴露在不利的天气条件下,如风和雨。然而,栖居于网的中心使蜘蛛比隐藏在隐蔽场所中的蜘蛛能更迅速地察觉并捕获猎物,这是因为猎物的位置仅能被位于网中心的蜘蛛所确定。对在隐蔽场所中的蜘蛛而言,提高对猎物捕获率的方式之一是尽量减少隐蔽所与网中心的距离。而且,网中心与隐蔽所之间较短的距离使蜘蛛能更迅速地逃离危险境况。我使用既在网中心、又在隐蔽场所的硬类肥蛛(Larinioides sclopetarius Clerck),来检验这两种行为如何影响对猎物的捕获成功率。隐藏在隐蔽场所中的蜘蛛更经常忽略猎物,使猎物也有比较多的逃离机会,这样,与在网中心的蜘蛛相比,猎物的损失率就更高。另外,研究了隐蔽场所的位置对球型网图案的影响。在大多数球型网中,网中心上方的区域比网下方小,丝也比较少,形成了结构不对称的网;隐蔽场所通常在网的上方。当隐蔽场所的位置在实验中被倒转时,就形成了非典型的球型网。最后,L.sclopetarius建造的网有很突出的边缘非对称性,与隐蔽场所相邻的区域面积较小,而远离隐蔽场所的区域面积较大,这也可解释为减少了隐蔽场所和网中心之间的距离[动物学报50(4):559-565.2004]。  相似文献   

9.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   

10.
11.
Temperature dependency of consumer–resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature‐driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb‐weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid‐rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low‐ or high‐elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species‐specific differences in their hunting behavior and sensitivity to temperature.  相似文献   

12.
13.
Caves are not closed systems. Trophic dynamics in these habitats are driven by resource availability, and species that move between cave and outdoor environments may play a major role in resource availability. Spiders are among the most abundant invertebrates in caves; however, very few studies have tested factors hypothesized to affect the distribution of spiders among caves, and it is not known whether the trophic features of caves play a role in determining the occurrence, abundance, or breeding success of spiders. We assessed the distribution of the cave‐dwelling orb‐weaver spider Meta menardi in Italy, in a Mediterranean and in a Pre‐alpine area during summer and winter. We analyzed the relationships between spider distribution and multiple cave features, describing both the abiotic and the biotic environment. Using visual encounter surveys, the detection probability of this species was high, indicating that this technique provides reliable information on spider distribution. In Mediterranean caves, spider presence was more likely in cold and wet caves with abundant dipterans. In Pre‐alpine caves, spider presence was more likely in deep caves with abundant dipterans. Dipteran abundance was the variable best explaining spider distribution when pooling all sampled caves. This study shows that adults of M. menardi do not occur randomly among caves, but select caves with specific features. Prey availability and abiotic features are major determinants of habitat suitability for cave spiders. The strong relationship between spider distribution and prey availability suggests that the distribution of these spiders might be an indicator of the resources available in the twilight zones of caves.  相似文献   

14.
Field experiments carried out on the nocturnal orb weaver spider, Neoscona crucifera (Aranea: Araneidae), found in deciduous hardwood forests suggest that lighted areas where prey densities are elevated provide cues used by the spiders to rank optimal foraging sites. Specifically, experiments were conducted to test whether spiders exhibited preferences for lighted areas where prey densities are high, maximizing their energy intake per unit of foraging time, and minimizing energy expended on web building. Incandescent light bulbs of 4–60 W were used to influence prey densities, and results indicate that when given a choice of brighter versus darker foraging areas, spiders seek lighted areas where prey densities are high. In addition, results support the hypothesis that the size and time of web construction are drastically reduced in brighter situations.  相似文献   

15.
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services.  相似文献   

16.
Concerns have been raised that Bt maize pollen may have adverse effects on non‐target organisms; consequently, there is a general call for Bt maize risk assessment evaluating lethal and sublethal side effects. Spiders play an important economic and ecological role as pest predators in various crops, including maize. Web‐building spiders, especially, may be exposed to the Cry1Ab toxin of Bt maize by the ingestion of pollen via ‘recycling’ of pollen‐dusted webs and intentional pollen feeding. In this study, the potential Bt maize pollen exposure of orb‐web spiders was quantified in maize fields and adjacent field margins, and laboratory experiments were conducted to evaluate the possible effects of Bt maize pollen consumption on juvenile garden spiders, Araneus diadematus (Clerck) (Araneae: Araneidae). In maize fields and neighbouring field margins, web‐building spiders were exposed to high amounts of Bt maize pollen. However, a laboratory bioassay showed no effects of Bt maize pollen on weight increase, survival, moult frequency, reaction time, and various web variables of A. diadematus. A pyrethroid insecticide (Baythroid) application affected weight increase, survival, and reaction time of spiders negatively. In conclusion, the insecticide tested showed adverse effects on the garden spider, whereas the consumption of Bt maize pollen did not. This study is the first one on Bt maize effects on orb‐web spiders, and additional research is recommended in order to account for further spider species, relative fitness parameters, prey‐mediated effects, and possible long‐term chronic consequences of Bt exposure.  相似文献   

17.
The aerial orb web woven by spiders of the family Araneidae typifies these organisms to laypersons and scientists alike. Here we describe the oldest fossil species of this family, which is preserved in amber from Alava, Spain and represents the first record of Araneidae from the Lower Cretaceous. The fossils provide direct evidence that all three major orb web weaving families: Araneidae, Tetragnathidae and Uloboridae had evolved by this time, confirming the antiquity of the use of this remarkable structure as a prey capture strategy by spiders. Given the complex and stereotyped movements that all orb weavers use to construct their webs, there is little question regarding their common origin, which must have occurred in the Jurassic or earlier. Thus, various forms of this formidable prey capture mechanism were already in place by the time of the explosive Cretaceous co-radiation of angiosperms and their flying insect pollinators. This permitted a similar co-radiation of spider predators with their flying insect prey, presumably without the need for a 'catch-up lag phase' for the spiders.  相似文献   

18.
This study tested the hypothesis that habitat structure dictates the distribution and community composition of arboreal arthropods. A diverse arthropod assemblage of Douglas-fir canopies, which included Araneae, Psocoptera, Collembola and Homoptera, was chosen as a model system. Habitat structural diversity, defined as needle density and branching complexity of Douglas-fir branches, was manipulated in a four-month experiment by needle removal, thinning and tying of branches. Abundance of canopy spiders declined significantly following needle density reduction and branch thinning, branch tying significantly increased spider abundance. Distinct habitat utilization patterns were found among individual spider guilds. Orb weavers (Araneidae) dominated spider assemblages in structurally simple habitats, whereas tied branches were colonized primarily by sheet-web weavers (Linyphiidae) and nocturnal hunting spiders (Anyphaenidae and Clubionidae). Spider species richness and average body size of several spider species increased in structurally more complex habitats. Arboreal spiders appeared to be limited by strong bottom-up effects in the form of habitat quality and, to a lesser degree, prey availability. Habitat manipulations did not affect densities or biomass of flying arthropod colonists in the branch vicinity. Needle removal and branch thinning led to a significant decline in the abundance of Psocoptera and Collembola. Tying of branches resulted in an eight-fold increase in Collembola numbers, organisms most sensitive to habitat alterations. Canopy habitat structure modified vertical dispersal of Collembola from forest litter, which may have significant implications for arboreal consumers. Our results lend strong support to the importance of habitat structural diversity in explaining general patterns of arthropod abundance and diversity on plants.  相似文献   

19.
Abstract:  Two management systems, biological and integrated, were compared to control the major pest, codling moth ( Cydia pomonella ) in apple orchards. The aim of the study was to assess the effect of these two systems on arboreal spiders. The biological system was based on the use of biological preparations, whereas in the integrated system selective pesticides were employed. The control plot had no pesticide treatment. The abundance of spiders was similar in all study plots during 3 years of study. Diversity, however, was higher in the biological plot than in the control and the integrated plots, suggesting that the response of spiders to management was guild-specific. Four spider families dominanted in all plots: Araneidae (orb weavers), Theridiidae (space-web weavers), and Philodromidae and Thomisidae (ambushers). While Araneidae and Thomisidae were similarly abundant on all plots, the density of Theridiidae and Philodromidae differed. In the integrated plot there were significantly more theridiid spiders, whereas in the control plot philodromid spiders were significantly more abundant. On the biological plot, the two families were similarly abundant. These differences were attributed to different age of trees in the control and treated plots, different prey spectrum, different susceptibility of the two families to applied chemicals and intraguild predation of theridiids by philodromids.  相似文献   

20.
Summary Bolas spiders are relatively rare members of the large family known as orb weavers. Instead of using a typical web to capture prey, late-stadia and adult female bolas spiders swing a droplet of adhesive on a thread at flying insects. Mastophora hutchinsoni (Araneae: Araneidae) is one of five Mastophora species known from the United States and occurs over much of eastern North America. It is univoltine in Kentucky and overwinters in the egg stage. Spiderling emerged in May, the diminutive males matured in late June and early July, and females matured in early September. Eggs were produced from late September to late October or early November. This report is the first complete documentation of the population phenology of any bolas spider. Newly-emerged M. hutchinsoni spiderlings did not use a bolas, but instead hunted by positioning themselves on the underside of leaf margins where they ambushed small arthropods that crawled along the leaf margins. Subadult and adult female M. hutchinsoni used a bolas to capture moths. Only male moths were captured, specifically three species of Noctuidae (bristly cutworm, bronzed cutworm, and smoky tetanolita) and one species of Pyralidae (bluegrass webworm). Among 492 prey captured by more than twenty spiders at two sites during 1985 and 1986, smoky tetanolita moths and bristly cutworm moths accounted for 93% of the total. The flight behavior of approaching moths, the limited taxa caught from a large available moth fauna, and the fact that only males were caught support the hypothesis that the spider attracts its prey by producing chemicals which mimic the sex pheromones of these moth species. Adult female M. hutchinsoni frequently captured more than one moth species on a given night. The two most common prey species were active at different times of night, the bristly cutworm soon after nightfall and the smoky tetanolita generally between 11:00 p.m. and dawn. This pattern suggests that mating activity of these moth species may be temporally isolated, a common phenomenon when sympatric species have similar pheromones. If so, the spider could capture both species without producing different pheromone-mimicking compounds, simply by hunting during the activity period of each species.The investigation reported in this paper (No. 87-7-76) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号