首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Aquatic insects emerging from streams can provide an important energy subsidy to recipient consumers such as riparian web-building spiders. This subsidy has been hypothesized to be of little importance where the primary productivity of the recipient habitat exceeds that of the donor habitat. 2. To test this hypothesis, we manipulated emerging stream insect abundance in a productive riparian rainforest in a replicated design using greenhouse-type exclosures, contrasted with unmanipulated stream reaches (four exclosures on two streams). 3. Experimental exclosures resulted in a 62.9% decrease in aquatic insect abundance in exclusion reaches compared with control reaches. The overall density of riparian spiders was significantly positively correlated with aquatic insect abundances. Horizontal orb weavers (Tetragnathidae) showed a strong response to aquatic insect reduction - abundance at exclosure sites was 57% lower than at control sites. Several spider families that have not been associated with tracking aquatic insect subsidies also showed significantly decreased abundance when aquatic insects were reduced. 4. This result is contrary to predictions of weak subsidy effects where recipient net primary productivity is high. These results suggest that predicting the importance of resource subsidies for food webs requires a focus on the relative abundance of subsidy materials in recipient and donor habitats and not simply on the total flux of energy between systems.  相似文献   

2.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

3.
In headwater streams, many aquatic insects rely on terrestrial detritus, while their emergence from streams often subsidizes riparian generalist predators. However, spatial variations in such reciprocal trophic linkages remain poorly understood. The present study, conducted in a northern Japanese stream and the surrounding forest, showed that pool–riffle structure brought about heterogeneous distributions of detritus deposits and benthic aquatic insects. The resulting variations in aquatic insect emergence influenced the distributions of riparian web-building spiders. Pools with slow current stored greater amounts of detritus than riffles, allowing more benthic aquatic insects to develop in pools. The greater larval biomass in pools and greater tendency for riffle insects to drift into pools at metamorphosis resulted in an emergence rate of aquatic insects from pools that was some four to five times greater than from riffles. In the riparian forest, web-building spiders (Tetragnathidae and Linyphiidae) were distributed in accordance with the emergence rates of aquatic insects, upon which both spider groups heavily depended. Consequently, the riparian strips bordering pools had a density of tetragnathid spiders that was twice as high as that of the riparian strips adjacent to riffles. Moreover, although limitations of vegetation structure prevented the aggregation of linyphiid spiders around pools, linyphiid density normalized by shrub density was higher in habitats adjacent to pools than those adjacent to riffles. The results indicated that stream geomorphology, which affects the storage of terrestrial organic material and the export of such material to riparian forests via aquatic insect emergence, plays a role in determining the strength of terrestrial–aquatic linkages in headwater ecosystems.  相似文献   

4.
Removal of riparian vegetation and straightening of stream channels (channelization) are the most prevalent forms of habitat degradation in streams and their riparian zones. Both have direct effects on organisms in the habitats where they occur, but also have potential to cause indirect effects by interrupting the flux of invertebrate prey between the two adjacent ecosystems. We measured abundance of web-building riparian spiders along four types of streams in Hokkaido, Japan: relatively undisturbed streams, streams where riparian vegetation had been removed, previously channelized streams where the banks had revegetated, and streams that had been both channelized and had the vegetation removed. Spider abundance was reduced by 70% or more by either habitat disturbance alone, or both combined, and the number of spider families was also reduced. Spiders of the family Tetragnathidae, which specialize in capturing adult insects emerging from streams, were strongly reduced by either form of habitat degradation alone, or in combination. In contrast, abundance of spiders in other families that capture prey from both terrestrial and aquatic sources was reduced more strongly by vegetation loss than channelization. These results indicate that riparian vegetation loss has strong direct effects on spiders by reducing habitat for web sites. They also suggest that channelization can have strong indirect effects on riparian-specialist tetragnathid spiders, probably by reducing the flux of adult aquatic insects from the stream to the riparian zone.  相似文献   

5.
We examined the relationship between body size of the riparian spider Nephila clavata and the contribution of allochthonous (aquatic insects) and autochthonous (terrestrial insects) sources to its diet using stable isotope analysis. During the study period from July to September, the body size of the females increased remarkably (about 60-fold) but that of males remained small. The biomass of both aquatic and terrestrial insects trapped on the spider webs increased with spider size, with the biomass of the former ranging between 30 and 70% of that of the terrestrial insects. The average relative contribution of aquatic insects to the diet of the spiders, calculated from δ13C values, was 40–50% in spiders in the early juvenile and juvenile stages, 35% in adult males and 4% in adult females. There was a significant negative relationship between the relative contribution of aquatic insects and body size of the female spiders. We conclude that aquatic insects might be an important seasonal dietary subsidy for small spiders and that these allochthonous subsidies may facilitate the growth of riparian spiders, which may in turn enable the spiders to feed on larger prey.  相似文献   

6.
Adult aquatic insects emerging from streams can subsidize riparian food webs, but little is known of the spatial extent of these subsidies. Stable isotope (15N) enrichment of aquatic insects, principally a species of stonefly (Plecoptera: Leuctridae), emerging from an upland stream was used to trace the subsidy from the stream ecosystem to riparian spiders (Lycosidae). The downstream profile of spider δ15N correlated closely with that of adult stoneflies, indicating that they were deriving nutrition from aquatic sources. The contribution of adult aquatic insects to spider diets was determined using a two-source mixing model. Adult aquatic insects made up over 40% of spider diets adjacent to the stream, but <1% at 20 m from the stream. Enrichment of riparian spiders declined exponentially with distance from the stream channel. Aquatic-terrestrial subsidies were spatially restricted, but locally important, to riparian lycosid spiders at the study site.  相似文献   

7.
Spiders that are abundant along streams may depend on energy subsidies across land–water ecotones, but the effects of season and habitat structure on this trophic linkage remain poorly understood in the tropics. We carried out surveys and a manipulative experiment to investigate the effects of season and substrate availability on the distribution of riparian orb-web spiders in Hong Kong, southern China. In the surveys, spider abundance, prey, substrate use, and web orientation were recorded. The experiment involved installation of in-stream artificial substrates (ropes and bamboo poles) to increase substrate availability for web attachment. We found no seasonal difference in web abundance, but seasonal differences were observed for the prey on webs: aquatic insects (mostly Ephemeroptera and chironomid midges) contributed 69 percent of total prey collected during the wet season, but only 38 percent during the dry season. Most webs (50–80%) were < 0.5 m above the water and 45–51 percent of them tended to be orientated horizontally to the water surface and supported by overhanging vegetation and boulders. The addition of artificial substrates resulted in a 23–34 percent increase in the number of webs at the four treatment sites compared to controls, indicating that availability of web-building substrates is a critical determinant of the spider distribution. Our results suggest that riparian zones are potential 'hotspots' of food availability for spiders, and that the aquatic insect subsidy allows this habitat to support increased densities of spiders when the constraint of substrate availability is relaxed.  相似文献   

8.
We analyzed the food source of riparian spiders in a middle reach of the Chikuma River, Japan, by using stable isotope ratios of carbon and nitrogen. The carbon and nitrogen isotope ratios of attached algae were higher than those of terrestrial plants, reflecting a large carbon isotope fractionation in terrestrial plants and a difference in nitrogen sources. The carbon isotope ratios of terrestrial insects were similar to those of the terrestrial plants, and the ratios of aquatic insects were scattered between those of the terrestrial plants and the attached algae. The carbon and nitrogen isotope ratios of spiders were intermediate between those of the terrestrial and aquatic insects. The two-source mixing model using the carbon isotope ratio showed that the web-building spiders utilized both the terrestrial and aquatic insects, with large contribution by the aquatic insects (54% on average with a maximum of 92% among spiders taxa collected in each zone), in the riparian area in a middle reach of the Chikuma River. The large contribution of the aquatic insects was often observed for the spiders collected near river channel (<5m) and for the horizontal web-building spiders collected across the riparian area. The relative contribution of the aquatic insects might be related with food availability (distance from river channel) and spiders food preference reflected in their web types (horizontal vs. vertical). Our results showed that organic materials produced in the river channel, in the riparian area, and in the terrestrial area surrounding the riparian area were mixed at the carnivorous trophic level of riparian spiders.  相似文献   

9.
Carbon and nitrogen transfer from a desert stream to riparian predators   总被引:4,自引:0,他引:4  
Adult aquatic insects emerging from streams may be a significant source of energy for terrestrial predators inhabiting riparian zones. In this study, we use natural abundance delta(13)C and delta(15)N values and an isotopic (15)N tracer addition to quantify the flow of carbon and nitrogen from aquatic to terrestrial food webs via emerging aquatic insects. We continuously dripped labeled (15)N-NH(4) for 6 weeks into Sycamore Creek, a Sonoran desert stream in the Tonto National Forest (central Arizona) and traced the flow of tracer (15)N from the stream into spiders living in the riparian zone. After correcting for natural abundance delta(15)N, we used isotopic mixing models to calculate the proportion of (15)N from emerging aquatic insects incorporated into spider biomass. Natural abundance delta(13)C values indicate that orb-web weaving spiders inhabiting riparian vegetation along the stream channel obtain almost 100% of their carbon from instream sources, whereas ground-dwelling hunting spiders obtain on average 68% of their carbon from instream sources. During the 6-week period of the (15)N tracer addition, orb-web weaving spiders obtained on average 39% of their nitrogen from emerging aquatic insects, whereas spider species hunting on the ground obtained on average 25% of their nitrogen from emerging aquatic insects. To determine if stream subsidies might be influencing the spatial distribution of terrestrial predators, we measured the biomass, abundance and diversity of spiders along a gradient from the active stream channel to a distance of 50 m into the upland using pitfall traps and timed sweep net samples. Spider abundance, biomass and richness were highest within the active stream channel but decreased more than three-fold 25 m from the wetted stream margin. Changes in structural complexity of vegetation, ground cover or terrestrial prey abundance could not account for patterns in spider distributions, however nutrient and energy subsidies from the stream could explain elevated spider numbers and richness within the active stream channel and riparian zone of Sycamore Creek.  相似文献   

10.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

11.
Alterations to river flow conditions have wide impacts on riparian organisms in terms of behavior and biomass. However, little is known about natural flood impacts on prey use and individual growth of riparian predators. Using stable carbon isotope analysis, we investigated flood impacts on aquatic-prey use and the size structure of an orb-web spider, Nephila clavata, during 3 years under different flood conditions in a black locust forest in the middle reaches of the Chikuma River. Large floods depressed aquatic-prey abundance, but did not affect terrestrial-prey abundance in the riparian forest. Consequently, spider growth was stunted after large floods. Spider body size was positively correlated with the body sizes of both aquatic and terrestrial insects in spider webs, where terrestrial insects were significantly larger than aquatic insects. The δ13C of aquatic insects was about 8‰ higher than that of terrestrial insects, and the δ13C of both insect groups did not vary significantly between months or among years. A negative relationship was found between body size and δ13C in spiders under different subsidies levels. Our results showed that flow regime altered spider growth through changes in aquatic subsidies level, but not aquatic-prey use by the spiders due to relative body sizes of predators and prey. Changes in relative body sizes of predator and prey may be an important factor in understanding nutrients, materials, and energy flows in aquatic and terrestrial linkages in the context of flow regime.  相似文献   

12.
The aerial orb web woven by spiders of the family Araneidae typifies these organisms to laypersons and scientists alike. Here we describe the oldest fossil species of this family, which is preserved in amber from Alava, Spain and represents the first record of Araneidae from the Lower Cretaceous. The fossils provide direct evidence that all three major orb web weaving families: Araneidae, Tetragnathidae and Uloboridae had evolved by this time, confirming the antiquity of the use of this remarkable structure as a prey capture strategy by spiders. Given the complex and stereotyped movements that all orb weavers use to construct their webs, there is little question regarding their common origin, which must have occurred in the Jurassic or earlier. Thus, various forms of this formidable prey capture mechanism were already in place by the time of the explosive Cretaceous co-radiation of angiosperms and their flying insect pollinators. This permitted a similar co-radiation of spider predators with their flying insect prey, presumably without the need for a 'catch-up lag phase' for the spiders.  相似文献   

13.
SUMMARY 1. Transfer of carbon from freshwater to terrestrial ecosystems can occur through predation on adult aquatic insects, but the significance of this trophic pathway to the energetics of riparian communities is poorly understood. We used stable isotopes of carbon and nitrogen to explore linkages between aquatic insect production and the nutrition of web‐building and free‐living spiders alongside two streams in the North Island of New Zealand. 2. δ13C values for riparian tree leaves (means for each site = ?32.2 and ?30.3‰) were distinct from those of lichens collected from stream channel rocks and instream algae, both of which were similar (?23.4 to ?22.4‰). δ15N values for leaves were similar at both sites (?3.4 and ?2.7‰), but algae were considerably more depleted in δ15N atonesite suggesting significant differences in instream nitrogen sources between the twostreams. 3. Isotope values for potential aquatic prey of spiders indicated that aquatic algal production was their primary carbon source at both sites. Terrestrial invertebrates collected and assumed to be potential prey reflected a range of carbon sources and represented several trophic levels. 4. At one site, δ13C values indicated a primarily algae‐aquatic insect pathway of carbon transfer to both web‐building and free‐living spider guilds. The other site appeared to have a primarily terrestrial carbon pathway for the free‐living spider guild, and a mixed aquatic‐terrestrial pathway for the web‐building guild. 5. Overall, web‐building spiders were estimated to obtain around 61% of their body carbon from aquatic production compared with 55% for free‐living spiders. Our findings suggest that consumption of prey derived from aquatic sources can provide significant nutrition for spiders living along some stream channels. This pathway may represent an important feedback mechanism contributing to the energetics of riparian communities at sites where aquatic insect production is high.  相似文献   

14.
The rates of oxygen consumption and carbon dioxide release of primitive hunters and weaver spiders, the Chilean Recluse spider Loxosceles laeta Nicolet (Araneae: Sicariidae) and the Chilean Tiger spider Scytodes globula Nicolet (Araneae: Scytodidae), are analyzed, and their relationship with body mass is studied. The results are compared with the metabolic data available for other spiders. A low metabolic rate is found both for these two species and other primitive hunters and weavers, such as spiders of the families Dysderidae and Plectreuridae. The metabolic rate of this group is lower than in nonprimitive spiders, such as the orb weavers (Araneae: Araneidae). The results reject the proposition of a general relationship for metabolic rate for all land arthropods (related to body mass) and agree with the hypothesis that metabolic rates are affected not only by sex, reproductive and developmental status, but also by ecology and life style, recognizing here, at least in the araneomorph spiders, a group having low metabolism, comprising the primitive hunters and weaver spiders, and another group comprising the higher metabolic rate web building spiders (e.g. orb weavers).  相似文献   

15.
Orb-weaving spiders depend upon their two-dimensional silk traps to stop insects in mid flight. While the silks used to construct orb webs must be extremely tough to absorb the tremendous kinetic energy of insect prey, webs must also minimize the return of that energy to prey to prevent insects from bouncing out of oscillating webs. We therefore predict that the damping capacity of major ampullate spider silk, which forms the supporting frames and radial threads of orb webs, should be evolutionarily conserved among orb-weaving spiders. We test this prediction by comparing silk from six diverse species of orb spiders. Silk was taken directly from the radii of orb webs and a Nano Bionix test system was used either to sequentially extend the silk to 25% strain in 5% increments while relaxing it fully between each cycle, or to pull virgin silk samples to 15% strain. Damping capacity was then calculated as the percent difference in loading and unloading energies. Damping capacity increased after yield for all species and typically ranged from 40 to 50% within each cycle for sequentially pulled silk and from 50 to 70% for virgin samples. Lower damping at smaller strains may allow orb webs to withstand minor perturbations from wind and small prey while still retaining the ability to capture large insects. The similarity in damping capacity of silk from the radii spun by diverse spiders highlights the importance of energy absorption by silk for orb-weaving spiders.  相似文献   

16.
1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with other riparian consumers, resource subsidies from streams can directly enhance the performance or population density of riparian-dependent bats. To conserve and manage bat populations, it is important to protect not only forest ecosystems, but also adjacent aquatic systems such as streams.  相似文献   

17.
We examined web-building spider species richness and abundance in forests across a deer density gradient to determine the effects of sika deer browsing on spiders among habitats and feeding guilds. Deer decreased the abundance of web-building spiders in understory vegetation but increased their abundance in the litter layer. Deer seemed to affect web-building spiders in the understory vegetation by reducing the number of sites for webs because vegetation complexity was positively correlated with spider density and negatively correlated with deer density. In contrast, the presence of vegetation just above the litter layer decreased the spider density, and deer exerted a negative effect on this vegetation, possibly resulting in an indirect positive effect on spider density. The vegetation just above the litter layer may be unsuitable as a scaffold for building webs if it is too flexible to serve as a reliable web support, and may even hinder spiders from building webs on litter. Alternatively, the negative effect of this vegetation on spiders in the litter may be as a result of reduced local prey availability under the leaves because of the reduced accessibility of aerial insects. The response to deer browsing on web-building spiders that inhabit the understory vegetation varied with feeding guild. Deer tended to affect web-invading spiders, which inhabit the webs of other spiders and steal prey, more heavily than other web-building spiders, probably because of the accumulated effects of habitat fragmentation through the trophic levels. Thus, the treatment of a particular higher-order taxon as a homogeneous group could result in misleading conclusions about the effects of mammalian herbivores.  相似文献   

18.
1. Low flows in rivers are predicted to increase in extent and severity in many areas in the future, yet the consequent impacts of river drying on terrestrial communities via (i) changes to riparian microclimatic conditions and (ii) the identity and abundance of emerging aquatic insects available to riparian predators have not been quantified. 2. We investigated the influence of low river flow on a riparian fishing spider, Dolomedes aquaticus, in five New Zealand rivers containing permanently flowing and drying reaches and, in one river, along a longitudinal drying gradient. 3. The biomass of aquatic insects, potential prey for D. aquaticus, declined with low river flows while the abundance of potential terrestrial prey remained similar at all sites. In the replicate rivers, and along the longitudinal drying gradient, spider biomass was lower, and size classes were skewed towards more small and fewer large spiders, in drying sites. A desiccation experiment in the laboratory indicated high sensitivity of the spiders, with prey presence increasing spider survival. 4. Differences in the spatial distribution, biomass and population size structure of spiders were observed along the longitudinal drying gradient and disappeared within 16 days of the water returning to all sites. 5. In total, low river flow affected the biomass of D. aquaticus, as well as their size class structure and spatial distribution. This indicates that low river flows have the potential to affect adjacent terrestrial ecosystems.  相似文献   

19.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

20.
Using a virtual spider robot, we studied hypotheses about the weaving behaviour of orb spiders. Our model spiders built virtual webs that mimicked perfectly the visual architecture of real webs of the garden cross spider Araneus diadematus. The matching of capture spiral and auxiliary spiral pitch was an apparently emergent property in both types of web. This validated our interpretation of the garden spider''s web-building decision rules, which use strictly local interactions with previously placed threads to generate global architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号