首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Lost of adenomatous polyposis coli gene (Apc) disturbs the migration of intestinal epithelial cells but the mechanisms have not been fully characterized. Since we have demonstrated that SK3/KCa2.3 channel promotes cancer cell migration, we hypothesized that Apc mutation may affect SK3/KCa2.3 channel-mediated colon epithelial cell motility. We report evidence that SK3/KCa2.3 channel promotes colon epithelial cells motility. Following Apc mutation SK3/KCa2.3 expression is largely reduced leading to a suppression of the SK3/KCa2.3 channel mediated-cell migration. Our findings reveal a previously unknown function of the SK3/KCa2.3 channel in epithelial colonic cells, and suggest that Apc is a powerful regulator SK3/KCa2.3 channel.  相似文献   

2.
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that has been implicated as a potential carcinogen and epigenotoxicant. We have previously reported dose-dependent incidence of hepatic tumors in 10-month-old isogenic mice perinatally exposed to BPA. Here, we evaluated DNA methylation at 3 candidate genes (Esr1, Il-6st, and Stat3) in liver tissue of BPA-exposed mice euthanized at 2 time points: post-natal day 22 (PND22; n = 147) or 10-months of age (n = 78, including n = 18 with hepatic tumors). Additionally, DNA methylation profiles were analyzed at human homologs of murine candidate genes in human fetal liver samples (n = 50) with known liver tissue BPA levels. Candidate genes were chosen based on reported expression changes in both rodent and human hepatocellular carcinoma (HCC). Regions for bisulfite sequencing were chosen by mining whole genome next generation sequencing methylation datasets of both mice and human liver samples with known perinatal BPA exposures. One of 3 candidate genes, Stat3, displayed dose-dependent DNA methylation changes in both 10-month mice with liver tumors as compared to those without liver tumors and 3-week sibling mice from the same exposure study, implicating Stat3 as a potential epigenetic biomarker of both early life BPA exposure and adult disease in mice. DNA methylation profiles within STAT3 varied with liver tissue BPA level in human fetal liver samples as well, suggesting STAT3 may be a translationally relevant candidate biomarker. These data implicate Stat3 as a potential early life biomarker of adult murine liver tumor risk following early BPA exposure with early evidence of relevance to human health.  相似文献   

3.
4.
5.
Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2(-/-) mice. Colons harvested from WT and TLR2(-/-) mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/-) mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/-) colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.  相似文献   

6.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.  相似文献   

7.
糖原合成激酶3β(GSK3β)作为一种多功能的丝氨酸/苏氨酸蛋白激酶,通过其多元化的活性调节方式,参与肿瘤形成的Wnt/β-catenin、NF-κB等多个信号传导通路,其生物学作用与肿瘤细胞的生长、增殖及凋亡过程密切相关;但是GSK3β在不同类型肿瘤中承担的角色是相反的,如在消化系统肿瘤中起到促癌作用,在乳腺癌、肺癌等肿瘤中表现为抑制作用。总结近年来GSK3β在恶性肿瘤中的作用及研究现状做一综述。  相似文献   

8.
Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice   总被引:3,自引:0,他引:3  
Taketo MM  Takaku K 《Human cell》2000,13(3):85-95
The SMAD4 (Dpc4) gene plays a key role in the TGF-beta signaling pathway. We recently inactivated the mouse homolog Smad4. The homozygous mutants were embryonic lethals, whereas the heterozygotes were viable and fertile. Although young heterozygotes were normal, old mice developed gastric and duodenal polyps similar to those found in human juvenile polyps characterized by abundant stroma and eosinophilic infiltrations. These data are consistent with the reports that a subset of human juvenile polyposis kindreds carry germline mutations in the SMAD4 gene. We then introduced the Smad4 mutation into the Apc delta 716 knockout mice, a model for human familial adenomatous polyposis. Because both Apc and Smad4 are located on mouse chromosome 18, we constructed by meiotic recombination, compound heterozygotes carrying both mutations on the same chromosome. In such mice, intestinal polyps developed into more malignant tumors than those in the simple Apc delta 716 heterozygotes, showing an extensive stromal cell proliferation and strong submucosal invasion. These results indicate that mutations in SMAD4 play a significant role in the malignant progression of colorectal tumors.  相似文献   

9.
10.
Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.  相似文献   

11.
We employed transgenic mice overexpressing betacellulin (BTC) to study its effects in the gut. BTC stimulated crypt cell proliferation and markedly increased intestinal size, while the crypt-villus architecture was preserved. Introduction of a dominant negative epidermal growth factor receptor (EGFR) completely abolished the intestinal hyperplasia. BTC increased polyp multiplicity but did not change the mean size or the histological quality of intestinal polyps in Apc(+/Min) mice. Analysis of intact and cleaved caspase-3 levels indicated that BTC has anti-apoptotic effects in the intestinal epithelium. We conclude that increased BTC levels support the survival of nascent adenomas in Apc(+/Min) mice, resulting in a larger total polyp number at later stages.  相似文献   

12.
X rays are well known to cause genetic damage and to induce many types of carcinomas in humans. The Apc(min/+) mouse, an animal model for human familial adenomatous polyposis (FAP), contains a truncating mutation in the APC gene and spontaneously develops intestinal adenomas. To elucidate the role of X rays in the development of intestinal tumors, we examined the promotion of carcinogenesis in X-irradiated Apc(min/+) mice. Forty out of 77 (52%) X-irradiated Apc(min/+) mice developed adenocarcinomas that invaded the proprial muscle layer of the small intestine; 24 of 44 (55%) were in males, and 16 of 33 (49%) were in females. In contrast, invasive carcinomas were detected in the small intestines of only 13 of 64 (20%) nonirradiated Apc(min/+) mice; nine of 32 (28%) were in males and four of 32 (13%) were in females. These differences between X-irradiated and nonirradiated Apc(min/+) mice in the occurrence of invasive intestinal carcinomas were statistically significant (P < 0.05 for males, P < 0.005 for females). In wild-type mice, invasive carcinomas were not detected in either X-irradiated or nonirradiated mice. Apc(min/+) mice had many polyps in the large intestine with or without X irradiation; there was no difference in the number of polyps between the two groups. Also, invasive carcinomas were not detected in the large intestine with or without irradiation. The occurrence of mammary tumors, which was observed in Apc(min/+) mice, was found to be increased in irradiated Apc(min/+) mice (P < 0.01). Apc(min/+) mice had many polyps in the small and large intestines with or without X irradiation. X-irradiated Apc(min/+) mice had highly invasive carcinomas in the small intestine with multiplicities associated with invasiveness. Our results suggest that X radiation may promote the invasive activity of intestinal tumors in Apc(min/+) mice.  相似文献   

13.
Adenomatous polyposis coli (APC) functions are involved in the heterotypic interactions occurring between intestinal epithelial cells (IECs) and intra-epithelial lymphocytes (IELs). These interactions may be of interest in cancer prevention, since recent data provide evidence for lymphocyte mediated immunosurveillance of epithelial cancers. The present study attempts to determine if APC inactivation induces changes in the cross-talk between IEC and large intestine IEL (LI-IEL) through intercellular adhesion molecule (ICAM-1)/leukocyte function-associated (LFA-1) interactions. Mouse Apc+/+ and Apc+/Min colonocytes were co-cultivated with LI-IEL. When co-cultured with LI-IEL Apc+/Min IEC but not Apc+/+ IEC expressed high levels of ICAM-1. The presence of ICAM-1 was linked to TNFalpha production in both co-cultures and TNFR expression only in co-cultivated Apc+/Min IEC. Finally, butyrate enhanced the expression of ICAM-1 in Apc+/Min IEC co-cultured with LI-IEL, and the secretion of TNFalpha by both types of co-cultures. These events could participate in determining the Apc+/Min IEC immunogenicity under different in vivo conditions.  相似文献   

14.
《Translational oncology》2020,13(11):100841
Gastric cancer is one of the most lethal cancers worldwide. FYN, a gene that is differentially expressed in gastric cancer, is considered a critical metastasis regulator in several solid tumors, but its role in gastric cancer is still unclear. This study aimed to evaluate the role of FYN and test whether FYN promotes migration and invasion of gastric cancer cells in vitro and in vivo via STAT3 signaling. FYN was overexpressed in gastric cancer and positively correlated with metastasis. FYN knockdown significantly decreased cancer cell migration and invasion, whereas FYN overexpression increased cancer migration and invasion. Genetic inhibition of FYN decreased the number of metastatic lung nodules in vivo. Several epithelial-mesenchymal transition markers were positively correlated with FYN expression, indicative of FYN involvement in this transition. Furthermore, gene set enrichment analysis of a Cancer Genome Atlas dataset revealed that the STAT3 signaling pathway was positively correlated with FYN expression. STAT3 inhibition reversed the FYN-mediated epithelial-mesenchymal transition and suppressed metastasis. In conclusion, FYN promotes gastric cancer metastasis possibly by activating STAT3-mediated epithelial mesenchymal transition and may be a novel therapeutic target for gastric cancer.  相似文献   

15.
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.  相似文献   

16.
Ectopic expression of certain Wnt genes in mouse mammary tissue is tumorigenic, and mutations that stabilize beta-catenin are found in various human cancers including colorectal cancer. To determine the role of stabilized beta-catenin in intestinal tumorigenesis in mice, we constructed by embryonic stem (ES) cell-mediated homologous recombination, a mutant beta-catenin allele whose exon 3 was sandwiched by loxP sequences. When the germline heterozygotes were crossed with mice expressing Cre recombinase in the intestines, the serines and threonine encoded by exon 3 and to be phosphorylated by glycogen synthase kinase 3beta (GSK3beta) were deleted in the offspring intestines, which caused adenomatous intestinal polyps resembling those in Apc(Delta716) knockout mice. Some nascent microadenomas were also found in the colon. These results present experimental genetic evidence that activation of the Wnt signaling pathway can cause intestinal and colonic tumors.  相似文献   

17.
Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS). Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.  相似文献   

18.
The Ca2+-activated Cl? channel ANO1 is widely expressed in epithelial cells, and ANO1 upregulation is implicated in the oncogenesis of many epithelium-originated cancers. However, whether ANO1 plays a causal role in the tumorigenesis of colorectal cancer remains largely unknown. Here, we show that ANO1 channel protein is upregulated in human colorectal cancer tissue samples and its upregulation is correlated with the TNM staging, histological type, pathological differentiation and poor prognosis. Knockdown or pharmacological inhibition of ANO1 suppresses colorectal cancer cell proliferation and induces cell apoptosis. Furthermore, ANO1 knockdown inhibits the growth of subcutaneous xenograft tumors implanted with colorectal cancer HT-29 cells in nude mice. Mechanically, knockdown of endogenous ANO1 inactivates the Wnt/β-catenin signaling through downregulating critical components, such as Frizzled protein 1, β-catenin and upregulating GSK3β. Taken together, our results demonstrate that ANO1 upregulation is involved in the tumorigenesis of colorectal cancer, and inhibition of ANO1 upregulation or inactivating downstream Wnt/β-catenin signaling may have therapeutic potential for colorectal cancer.  相似文献   

19.
20.
Hepatocellular carcinoma (HCC) is most common malignant cancer worldwide; however, the mortality rate of HCC remains high due to the invasion and metastasis of HCC. Thus, exploring novel treatments to prevent the invasion of HCC is needed for improving clinical outcome of this fatal disease. In this study, we identified lectin from Bandeiraea simplicifolia seeds (BS‐I) binds to metastasis‐associated HCC cell surface glycans by a lectin microarray and inhibits HCC cell migration and invasion through downregulating the matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and urokinase‐type plasminogen activator (uPA) production. These effects of BS‐I were mediated by inhibiting the activation of AKT/GSK‐3β/β‐catenin pathway and depended on specificity of lectin BS‐I binding to GalNAc. GSK3β inhibitors rescued BS‐I‐mediated inhibition of migration and invasion of HCC cell. Further, we identified that lectin BS‐I interacts with sGrp78, affects membrane localization of sGrp78 and attenuates the binding of sGrp78 and p85 to inhibit the activation of AKT/GSK‐3β/β‐catenin pathway. Overexpression of Grp78 or P85 rescues BS‐I‐mediated inhibition of migration and invasion of HCC cell. These findings demonstrated for the first time that BS‐I can act as a novel potential drug to prevent the invasion of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号