首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HIV-1抗体蛋白印迹确认与核酸检测复核对比研究   总被引:4,自引:0,他引:4  
杨成勇  刘翌 《病毒学报》2006,22(2):114-117
应用病毒核酸载量法NASBA和HIV-1 RNA的巢式逆转录PCR(nested RT-PCR)法与HIV抗体蛋白印迹(WB)方法,对经过初筛的44例HIV-1抗体阳性标本进行了对照检测研究。发现了2例(gp160、p24)和1例(gp160g、p120p、66、p24)的特殊阳性样本,经NASBA法和该RT-PCR法核酸检测为阴性;WB确认的4例gp160阳性带、1例p24、p17阳性带和13例p24阳性带,经NASBA法和该RT-PCR法核酸检测也为阴性;而WB确认的其余全部带型的抗体阳性标本经过NASBA法和该RT-PCR法检测均为阳性。该研究表明对只有gp160p、24和gp160、gp120p、66、p24的特殊阳性标本和以p24为主的抗体不确定标本需要用RT-PCR或NASBA方法进行核酸检测,以进一步确认。  相似文献   

2.
IgA has been supposed to play an important role in the prevention of HIV-1 infection. In this study, IgA-binding sites on gp120 and gp41 of HIV-1 envelope glycoproteins were analyzed using ELISA and overlapping synthetic peptides covering all of the gp120 and gp41 sites. IgA antibodies in plasma and saliva mainly bound to six and five sites on gp120 and gp41, respectively. Some of the IgA-binding sites differed from those of IgG-binding sites and the amount of IgA antibodies that bound to each site varied among samples. IgA antibodies in some plasma samples neutralized HIV-1 infection, and those IgA antibodies contained the antibodies which bound to the V3, C3 and ELDKWA sites. The results suggest that IgA antibodies which bind to certain sites on HIV-1 envelope glycoproteins may neutralize HIV-1 infection, presumably at mucosal sites where most IgA antibodies are produced. The induction of IgA antibodies that bind specific sites and neutralize HIV-1 infection at mucosal sites may be important in the development of a vaccine against HIV-1 infection.  相似文献   

3.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   

4.
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.  相似文献   

5.
Antibodies to several epitopes of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41) can synergize in inhibiting HIV-1 infection. In the present study we tested the ability of a monoclonal antibody (MAb), 5A8, which interacts with CD4 domain 2, and other CD4-specific MAbs to synergize with antibodies against gp120. We have previously found that 5A8 inhibits HIV-1 entry without interfering with gp120 binding to CD4, presumably by affecting a postbinding membrane fusion event. Because antibodies to the gp120 V3 loop also affect post-CD4-gp120-binding events, 5A8 was first tested in combination with anti-V3 loop antibodies for possible synergy. The anti-V3 loop antibodies 0.5 beta, NEA-9205, and 110.5 acted synergistically with 5A8 in inhibiting syncytium formation between gp120-gp41- and CD4-expressing cells. A human MAb to an epitope of gp120 involved in CD4 binding, IAM 120-1B1, and another anti-CD4 binding site antibody, PC39.13, also exerted synergistic effects in combination with 5A8. Similarly, an antibody against the gp120 binding site on CD4, 6H10, acted synergistically with an anti-V3 loop antibody, NEA-9205. However, a control anti-CD4 antibody, OKT4, which does not significantly inhibit syncytium formation alone, produced only an additive effect when combined with NEA-9205. Serum from HIV-1-infected individuals, which presumably contains antibodies to the V3 loop and the CD4 binding site, exhibited a strong synergistic effect with 5A8 in inhibiting infection by a patient HIV-1 isolate (0104B) and in blocking syncytium formation. These results indicate that therapeutics based on antibodies affecting both non-gp120 binding and gp120 binding epitopes of the target receptor molecule, CD4, could be efficient in patients who already contain anti-gp120 antibodies and could also be used to enhance passive immunization against HIV-1 in combination with anti-gp120 antibodies.  相似文献   

6.
Current human immunodeficiency virus type 1 (HIV-1) envelope vaccine candidates elicit high antibody binding titers with neutralizing activity against T-cell line-adapted but not primary HIV-1 isolates. Serum antibodies from these human vaccine recipients were also found to be preferentially directed to linear epitopes within gp120 that are poorly exposed on native gp120. Systemic immunization of rabbits with an affinity-purified oligomeric gp160 protein formulated with either Alhydrogel or monophosphoryl lipid A-containing adjuvants resulted in the induction of high-titered serum antibodies that preferentially bound epitopes exposed on native forms of gp120 and gp160, recognized a restricted number of linear epitopes, efficiently bound heterologous strains of monomeric gp120 and cell surface-expressed oligomeric gp120/gp41, and neutralized several strains of T-cell line-adapted HIV-1. Additionally, those immune sera with the highest oligomeric gp160 antibody binding titers had neutralizing activity against some primary HIV-1 isolates, using phytohemagglutinin-stimulated peripheral blood mononuclear cell targets. Induction of an antibody response preferentially reactive with natively folded gp120/gp160 was dependent on the tertiary structure of the HIV-1 envelope immunogen as well as its adjuvant formulation, route of administration, and number of immunizations administered. These studies demonstrate the capacity of a soluble HIV-1 envelope glycoprotein vaccine to elicit an antibody response capable of neutralizing primary HIV-1 isolates.  相似文献   

7.
Antibodies against human immunodeficiency virus type-1 (HIV-1) in samples from blood donors are commonly detected by various enzyme-linked immunosorbent assays (ELISA) and by confirmatory tests, e.g., "Western blot" or immunofluorescence tests. Immunoblot reactivity, which is directed only towards the HIV-1 core proteins p 18, p 24 and p 55, may represent false-positive reactions. Out of 125,000 blood donations, 140 were repeatably HIV-1 antibody reactive by ELISA; of these, 20 were doubtful positive sera with isolated p 18 and/or p 24 bands in the HIV-1 confirmatory assay. Antibodies to HIV-2 are known to cross-react with these HIV-1 core proteins. We therefore assayed the 20 sera by immunofluorescence and immunoblotting for the presence of antibodies to HIV-2. None of these doubtful HIV-1 antibody positive blood donor sera was found to have antibodies to HIV-2.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.  相似文献   

9.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

10.
Human monoclonal antibodies (HuMAbs) demonstrate great potential for passive immunotherapy against HIV-1. The gp41 transmembrane envelope glycoprotein of HIV has an important role in the pathogenicity of AIDS and importantly displays considerably less hypervariability than the gp120 surface envelope HIV glycoprotein, which makes it particularly a better candidate for the development of passive and active immunotherapies. The general aim of this study was to develop HuMAbs to HIV surface glycoproteins and particularly gp41. Peripheral blood mononuclear cells (PBMCs) were isolated from an HIV-seropositive long-term nondisease progressing patient. B-cells from this individual were then immortalized by Epstein-Barr virus (EBV) transformation, and antibody production was stabilized by fusion of transformed cells with a heteromyeloma. Subsets of the human heterohybridomas so generated were analyzed by ELISA. The hybridoma with the highest binding by immunoassay against gp160 was further analyzed. This hybridoma, designated as clone 37 (C37), was determined to be an IgM Kappa antibody and overlapping peptides of HIV envelope proteins (derived from the MN tissue culture line adapted HIV isolate) were used to map the specific binding domain of this HuMAb. Overlapping peptides designated 2026 (SWSNKSLDDIWNN, AA614-626), and 2027 (DDIWNNMTWMQWEREIDNYT, AA621-640) within the HIV-1 gp41 transmembrane glycoprotein were demonstrated to bind to C37 indicating that the specific binding domain for the antibody was DDIWNN. High affinity binding of C37 by ELISA to recombinant gp41 was demonstrated as well. Few IgM HuMAbs against HIV have been generated and characterized. Theoretically, because of the pentameric binding nature of IgM antibodies as well as their very efficient ability to activate complement, such reagents could have potential as anti-HIV agents.  相似文献   

11.
Sera collected in New York in 1984 from 77 patients with homozygous beta-thalassemia were assayed for antibodies to HTLV-III by ELISA and Western blot techniques. Eight (12%) of the 66 hypertransfused thalassemics were seropositive. Retrospective sera of these eight individuals were examined by radioimmune precipitation (RIP), and assays for neutralization of virus infectivity were performed. With seroconversion, antibodies to viral envelope proteins appeared first and were correlated with development of neutralizing antibody. Affinity purified gp120, the major envelope glycoprotein of HTLV-III, blocked viral infectivity and absorbed neutralizing antibody activity from a positive serum. Neutralizing antibody titers mirrored antibody titers to gp120 by RIP. Antibody to gp120 sometimes occurred in the absence of neutralizing antibody, although the reverse was not true. One thalassemia patient who exhibited antibody to gp120 for 3 yr post-seroconversion failed to develop neutralizing antibody, acquired the acquired immunodeficiency syndrome with central nervous system involvement and lymphoma, and subsequently died. In contrast, all other seropositive thalassemics possessed neutralizing antibodies, and were asymptomatic or exhibited only lymphadenopathy. These results indicate that gp120 elicits neutralizing antibodies in the course of natural infection with HTLV-III. The relationship seen here between neutralizing antibody and better clinical outcome needs to be verified by additional studies.  相似文献   

12.
The antigenicity of three chimeric synthetic peptides (Qm, Qm-16, and Qm-17) incorporating an immunodominant epitope of the gp41 transmembrane protein (587-617) and the different epitopes of the gp120 envelope protein (495-516), (301-335), (502-516) of human immunodeficiency virus (HIV-1), separated by two glycine residues, was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HIV-1 positive sera (n = 47). The specificity was evaluated with samples from healthy blood donors (n = 20) and anti-HIV-2 positive samples (n = 10). The results indicate that the chimeric peptide, Qm, was the most reactive one because it detected antibodies to virus efficiently. This may be related to peptide adsorption onto the solid surface, the C-terminal region of HIV-1 gp120 (495-516) combined with gp41 (587-617) in the chimera, and the epitope accessibility to the antibodies. This study showed the usefulness of the chimeric peptides as antigen to detect antibodies to HIV-1 virus.  相似文献   

13.
The few antibodies that can potently neutralize human immunodeficiency virus type 1 (HIV-1) recognize the limited number of envelope glycoprotein epitopes exposed on infectious virions. These native envelope glycoprotein complexes comprise three gp120 subunits noncovalently and weakly associated with three gp41 moieties. The individual subunits induce neutralizing antibodies inefficiently but raise many nonneutralizing antibodies. Consequently, recombinant envelope glycoproteins do not elicit strong antiviral antibody responses, particularly against primary HIV-1 isolates. To try to develop recombinant proteins that are better antigenic mimics of the native envelope glycoprotein complex, we have introduced a disulfide bond between the C-terminal region of gp120 and the immunodominant segment of the gp41 ectodomain. The resulting gp140 protein is processed efficiently, producing a properly folded envelope glycoprotein complex. The association of gp120 with gp41 is now stabilized by the supplementary intermolecular disulfide bond, which forms with approximately 50% efficiency. The gp140 protein has antigenic properties which resemble those of the virion-associated complex. This type of gp140 protein may be worth evaluating for immunogenicity as a component of a multivalent HIV-1 vaccine.  相似文献   

14.
The reactivity of antibodies with dimeric and monomelic peptide antigens was compared by ELISA. A panel of highly purified synthetic peptides of HIV-1 representing defined regions, 598–609 and 524 533 (fusion domain) of gp41 and 306–320 of gpl20, were used as antigens in the ELISA. These peptides were selected and synthesized taking into account the level of sequence conservation of various strains and hydrophilicity. The analysis included sera from 52 HIV-1 infected individuals and 53 HIV-1 negative controls. Both peptides from gp41 were found to be particularly immunoreactive with sera from HIV-1 infected individuals. The frequency of reactivity to the selected peptide from gp120 (V3 loop) in infected individuals was 82%. An interesting observation was that the dimeric peptide antigens had a detection rate more than 4-fold higher than the monomeric antigens. We found that lower levels of antibodies could be detected with dimeric antigens. The peptides reacted with few sera other than HIV-1 positive sera. These results implicate the potential dimeric peptide antigens to be utilized in the serodiagnosis of HIV-1 infection.  相似文献   

15.
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.  相似文献   

16.
应用斑点金免疫渗滤试验(dotimmunogoldfiltrationassay,DIGFA)建立了一种同步快速检测四种抗HIV-1/2IgG抗体的HIV诊断试纸。通过基因工程技术在大肠杆菌中表达了5种HIV抗原蛋白片段(P24,GP41,GP36,GP120V3,GP120C)。这5种抗原蛋白首先被固定在硝酸纤维素膜上,然后滴加待测血清,其中的病毒抗体通过免疫反应与抗原结合,再加胶体金标记的葡萄球菌蛋白A(SPA),待其渗过膜片后,洗涤,即可形成肉眼可见的红色斑点。用已确证的21份HIV阳性血清(其中包括1份HIV-1标准阳性血清和1份HIV-2标准阳性血清)和30份阴性血清进行了试验,结果表明该快速检测方法与ELISA方法无显著差异。该检测方法不需任何仪器,仅凭肉眼即可判定结果,整个检测过程不超过5分钟。与传统的的ELISA法相比,具有方便快速,成本低廉,应用范围广等优点。同时,此HIV快速诊断试纸可以同步检测并区分针对HIV-1和HIV-2感染的不同检测标志物(抗P24、GP41、GP120和GP36抗体),这对提高快速检测的灵敏度和准确性,以及对判断HIV感染者是否临近或已进入AIDS期有着较高的应用价值。  相似文献   

17.
Trypstatin, a new cellular Kunitz-type protease inhibitor purified from rat mast cells, inhibited syncytium formation in human immunodeficiency virus type 1 (HIV-1)-infected CCRF-CEM and uninfected Molt-4 clone 8 at a concentration of 1 microM. Anti-rat tongue mast cell tryptase antibodies reacted with Molt-4 clone 8 cells, as determined by Western blot and by immunofluorescence. In addition, the antibody inhibited syncytium formation. These findings along with homologous sequences with trypstatin and a neutralizing epitope of gp120 of HIV-1 suggest that a tryptase-like cellular enzyme(s) is involved in HIV-1 infection.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.  相似文献   

19.
Abstract A new capture test utilizing conjugated peptides has been developed for the detection of antibodies elicited against HIV-1. Human sera diluted 1:1000 were incubated in ELISA plates precoated with protein G. The captured IgG were allowed to react with three synthetic peptides corresponding to the gp41 sequence (591–611) YLKDQQLLGIWGCSGKLICTT, the gp120 sequence (314–329) IRIQRGPGRAFVTIGK and the p27 sequence (182–198) EWRFDSRLAFHHVAREL. The peptides were used in the form of N -hydroxysuccinimido-biotin ovalbumin conjugates. Peroxidase-labelled streptavidin was used to detect antigen-antibody complexes. The sensitivity and specificity of detection of antibodies were analyzed with 40 HIV positive sera, 10 seroconverting sera and 21 normal human sera (NHS). The results were compared with a commercial indirect ELISA in which a single conjugated gp41 peptide was used as antigenic probe. This indirect ELISA recognized 100% of the HIV positive and the seroconverting sera. The new capture test using the gp41 conjugated peptide also recognized 100% of the HIV positive sera but was more specific since it gave no false positive results whereas the indirect test did. The gp120 and p27 conjugated peptides detected 35/40 (87.5%) and 31/40 (77.5%) of HIV positive sera respectively and also detected 9/10 (90%) and 10/10 (100%) of the seroconverting sera respectively, without any false positive results (0/21). The proposed new capture test is a very sensitive and specific assay for detecting HIV antibodies.  相似文献   

20.
T Spehar  M Strand 《Journal of virology》1994,68(10):6262-6269
An antigen expressed by astrocytes in human brain tissue and by various human astrocytoma cell lines was shown to cross-react with a monoclonal antibody generated against amino acids (aa) 584 to 609 of the transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1). This region is an immunodominant segment of gp41, and high levels of antibodies against this epitope have been detected in both serum and cerebrospinal fluid of HIV-infected individuals at all stages of HIV infection. Immunohistochemistry with this monoclonal antibody demonstrated the presence of a cross-reactive antigen in human brain tissue, with an increased frequency and intensity of staining in HIV-positive individuals when compared with HIV-negative controls. By using a panel of HIV-positive and -negative sera, we show that antibodies in HIV-positive serum specifically bound to the surfaces of human astrocytoma cells. HIV-positive sera depleted of antibodies recognizing gp41 aa 584 to 609 showed a significant diminution in cell surface binding. Conversely, the serum antibodies that bound to and were eluted from the aa 584 to 609 peptide also bound to the astrocyte cell surface. To identify the target antigen, the immunoreactivity of three astrocytoma cell lines was examined. By immunoprecipitation of metabolically labeled cell lysates and Western blot (immunoblot) analysis, we identified a protein of approximately 100 kDa as the target antigen. Cross-reactive antibodies between HIV proteins and astrocyte epitopes, such as this 100-kDa protein and others previously reported, suggests that an autoimmune response against these target antigens may disrupt the normal functions of astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号