首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The esterification of alcohols such as sterols, diacylglycerols, and monoacylglycerols with fatty acids represents the formation of both storage and cytoprotective molecules. Conversely, the overproduction of these molecules is associated with several disease pathologies, including atherosclerosis and obesity. The human acyl-CoA:diacylglycerol acyltransferase (DGAT) 2 gene superfamily comprises seven members, four of which have been previously implicated in the synthesis of di- or triacylglycerol. The remaining 3 members comprise an X-linked locus and have not been characterized. We describe here the expression of DGAT2 and the three X-linked genes in Saccharomyces cerevisiae strains virtually devoid of neutral lipids. All four gene products mediate the synthesis of triacylglycerol; however, two of the X-linked genes act as acyl-CoA wax alcohol acyltransferases (AWAT 1 and 2) that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. AWAT1 and AWAT2 have very distinct substrate preferences in terms of alcohol chain length and fatty acyl saturation. The enzymes are expressed in many human tissues but predominate in skin. In situ hybridizations demonstrate a differentiation-specific expression pattern within the human sebaceous gland for the two AWAT genes, consistent with a significant role in the composition of sebum.  相似文献   

2.
BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron–exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals.  相似文献   

3.
Triacylglycerols (TAGs) and wax esters are neutral lipids with considerable importance for dietetic, technical, cosmetic, and pharmaceutical applications. Acinetobacter calcoaceticus ADP1 accumulates wax esters and TAGs as intracellular storage lipids. We describe here the identification of a bifunctional enzyme from this bacterium exhibiting acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) as well as acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. Experiments with a knock-out mutant demonstrated the key role of the bifunctional WS/DGAT for biosynthesis of both storage lipids in A. calcoaceticus. This novel type of long-chain acyl-CoA acyltransferase is not related to known acyltransferases including the WS from jojoba (Simmondsia chinensis), the DGAT1 or DGAT2 families present in yeast, plants, and animals, and the phospholipid:diacylglycerol acyltransferase catalyzing TAG formation in yeast and plants. A large number of WS/DGAT-related proteins were identified in Mycobacterium and Arabidopsis thaliana indicating an important function of these proteins. WS and DGAT activity was demonstrated for the translational product of one WS/DGAT homologous gene from M. smegmatis mc(2)155. The potential of WS/DGAT to establish novel processes for biotechnological production of jojoba-like wax esters was demonstrated by heterologous expression in recombinant Pseudomonas citronellolis. The potential of WS/DGAT as a selective therapeutic target of mycobacterial infections is discussed.  相似文献   

4.
Marinobacter hydrocarbonoclasticus DSM 8798 has been reported to synthesize isoprenoid wax ester storage compounds when grown on phytol as the sole carbon source under limiting nitrogen and/or phosphorous conditions. We hypothesized that isoprenoid wax ester synthesis involves (i) activation of an isoprenoid fatty acid by a coenzyme A (CoA) synthetase and (ii) ester bond formation between an isoprenoid alcohol and isoprenoyl-CoA catalyzed, most likely, by an isoprenoid wax ester synthase similar to an acyl wax ester synthase, wax ester synthase/diacylglycerol acyltransferase (WS/DGAT), recently described from Acinetobacter sp. strain ADP1. We used the recently released rough draft genome sequence of a closely related strain, M. aquaeolei VT8, to search for WS/DGAT and acyl-CoA synthetase candidate genes. The sequence information from putative WS/DGAT and acyl-CoA synthetase genes identified in this strain was used to clone homologues from the isoprenoid wax ester synthesizing Marinobacter strain. The activities of the recombinant enzymes were characterized, and two new isoprenoid wax ester synthases capable of synthesizing isoprenoid ester and acyl/isoprenoid hybrid ester in vitro were identified along with an isoprenoid-specific CoA synthetase. One of the Marinobacter wax ester synthases displays several orders of magnitude higher activity toward acyl substrates than any previously characterized acyl-WS and may reflect adaptations to available carbon sources in their environments.  相似文献   

5.
Acyl CoA:diacylglycerol acyltransferase (DGAT) is an integral membrane protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerols. Two DGAT enzymes have been identified (DGAT1 and DGAT2) with unique roles in lipid metabolism. DGAT1 is a multifunctional acyltransferase capable of synthesizing diacylglycerol, retinyl, and wax esters in addition to triacylglycerol. Here, we report the membrane topology for murine DGAT1 using protease protections assays and indirect immunofluorescence in conjunction with selective permeabilization of cellular membranes. Topology models based on prediction algorithms suggested that DGAT1 had eight transmembrane domains. In contrast, our data indicate that DGAT1 has three transmembrane domains with the N terminus oriented toward the cytosol. The C-terminal region of DGAT1, which accounts for ∼50% of the protein, is present in the endoplasmic reticulum lumen and contains a highly conserved histidine residue (His-426) that may be part of the active site. Mutagenesis of His-426 to alanine impaired the ability of DGAT1 to synthesize triacylglycerols as well as retinyl and wax esters in an in vitro acyltransferase assay. Finally, we show that the N-terminal domain of DGAT1 is not required for the catalytic activity of DGAT1 but, instead, may be involved in regulating enzyme activity and dimer/tetramer formation.  相似文献   

6.
Biologically produced wax esters can fulfil different industrial purposes. These functionalities almost drove the sperm whale to extinction from hunting. After the ban on hunting, there is a niche in the global market for biolubricants with properties similar to spermaceti. Wax esters can also serve as a mechanism for producing insect sex pheromone fatty alcohols. Pheromone-based mating disruption strategies are in high demand to replace the toxic pesticides in agriculture and manage insect plagues threatening our food and fiber reserves. In this study we set out to investigate the possibilities of in planta assembly of wax esters, for specific applications, through transient expression of various mix-and-match combinations of genes in Nicotiana benthamiana leaves. Our synthetic biology designs were outlined in order to pivot plant lipid metabolism into producing wax esters with targeted fatty acyl and fatty alcohols moieties. Through this approach we managed to obtain industrially important spermaceti-like wax esters enriched in medium-chain fatty acyl and/or fatty alcohol moieties of wax esters. Via employment of plant codon-optimized moth acyl-CoA desaturases we also managed to capture unusual, unsaturated fatty alcohol and fatty acyl moieties, structurally similar to moth pheromone compounds, in plant-accumulated wax esters. Comparison between outcomes of different experimental designs identified targets for stable transformation to accumulate specialized wax esters and helped us to recognize possible bottlenecks of such accumulation.  相似文献   

7.
In this study, a cDNA encoding a novel acyl-CoA:diacylglycerol acyltransferase (DGAT)-like protein is identified and isolated from the diatom microalga Phaeodactylum tricornutum (PtDGAT3). Analysis of the sequence reveals that ptDGAT3 cDNA encodes a protein of 504 amino acids with a molecular mass of 64.5 KDa. The putative ptDGAT3 protein has two catalytic domains: a wax ester synthase-like acyl-CoA acyltransferase domain and a bacteria-specific acyltransferase domain, which shows higher similarity to the DGAT3 of Acinetobacter calcoaceticus than reported DGAT1 or DGAT2 from high plants or algae. Its activity was confirmed by heterologous expression of PtDGAT3 in a neutral lipid-deficient quadruple mutant yeast Saccharomyces cerevisiae H1246. The recombinant yeast restored the formation of a lipid body and displayed a preference to the incorporation of unsaturated C18 fatty acids into triacyglycerol (TAG). This is the first characterized algal DGAT3 gene, giving further evidence to the occurrence of a DGAT3-mediated TAG biosynthesis pathway.  相似文献   

8.
The final step of triacylglycerol biosynthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. The two known DGATs, DGAT1 and DGAT2, are encoded by unrelated genes. Although both DGAT1 and DGAT2 knockout mice have reduced tissue triacylglycerol contents, they have disparate phenotypes, prompting us to investigate whether the two enzymes have unrecognized functional differences. We now report that DGAT1 exhibits additional acyltransferase activities in vitro, including those of acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases, and acyl CoA:retinol acyltransferase (ARAT), which catalyze the synthesis of diacylglycerols, wax esters, and retinyl esters, respectively. These activities were demonstrated in in vitro assays with membranes from insect cells or homogenates from COS7 cells overexpressing DGAT1. Wax synthase and ARAT activities were also demonstrated in intact COS7 cells expressing DGAT1. Additionally, cells and tissues from DGAT1-deficient mice exhibited reduced ARAT activity, and the mice had increased levels of unesterified retinol in their livers on a high-retinol diet. Our findings indicate that DGAT1 can utilize a variety of acyl acceptors as substrates in vitro and suggest that these activities may be relevant to the in vivo functions of DGAT1.  相似文献   

9.
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.  相似文献   

10.
Triacylglycerols are the predominant molecules of energy storage in eukaryotes. However, excessive accumulation of triacylglycerols in adipose tissue leads to obesity and, in nonadipose tissues, is associated with tissue dysfunction. Hence, it is of great importance to have a better understanding of the molecular mechanisms of triacylglycerol synthesis. The final step in triacylglycerol synthesis is catalyzed by the acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Although recent studies have shed light on metabolic functions of these enzymes, little is known about the molecular aspects of their structures or functions. Here we report the topology for murine DGAT2 and the identification of key amino acids that likely contribute to enzymatic function. Our data indicate that DGAT2 is an integral membrane protein with both the N and C termini oriented toward the cytosol. A long hydrophobic region spanning amino acids 66-115 likely comprises two transmembrane domains or, alternatively, a single domain that is embedded in the membrane bilayer. The bulk of the protein lies distal to the transmembrane domains. This region shares the highest degree of homology with other enzymes of the DGAT2 family and contains a sequence HPHG that is conserved in all family members. Mutagenesis of this sequence in DGAT2 demonstrated that it is required for full enzymatic function. Additionally, a neutral lipid-binding domain that is located in the putative first transmembrane domain was also required for full enzymatic function. Our findings provide the first insights into the topography and molecular aspects of DGAT2 and related enzymes.  相似文献   

11.
Acyl-CoA-dependent O-acyltransferases catalyze reactions in which fatty acyl-CoAs are joined to acyl acceptors containing free hydroxyl groups to produce neutral lipids. In this report, we characterize a human multifunctional O-acyltransferase (designated MFAT) that belongs to the acyl-CoA:diacylglycerol acyltransferase 2/acyl-CoA:monoacylglycerol acyltransferase (MGAT) gene family and is highly expressed in the skin. Membranes of insect cells and homogenates of mammalian cells overexpressing MFAT exhibited significantly increased MGAT, acyl-CoA:fatty acyl alcohol acyltransferase (wax synthase), and acyl-CoA:retinol acyltransferase (ARAT) activities, which catalyze the synthesis of diacylglycerols, wax monoesters, and retinyl esters, respectively. Furthermore, when provided with the appropriate substrates, intact mammalian cells overexpressing MFAT accumulated more waxes and retinyl esters than control cells. We conclude that MFAT is a multifunctional acyltransferase that likely plays an important role in lipid metabolism in human skin.  相似文献   

12.
13.
The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5′His6WS/DGAT comprising an N-terminal His6 tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5′His6atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein−1 min−1 was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5′His6WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1ΩKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1ΩKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry.  相似文献   

14.
The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.  相似文献   

15.
The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.  相似文献   

16.
The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5'His(6)WS/DGAT comprising an N-terminal His(6) tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5'His(6)atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein(-1) min(-1) was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5'His(6)WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1OmegaKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1OmegaKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry.  相似文献   

17.
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.  相似文献   

18.
Acyl CoA:diacylglycerol acyltransferase-2 (DGAT2) is an integral membrane protein that catalyzes the synthesis of triacylglycerol (TG). DGAT2 is present in the endoplasmic reticulum (ER) and also localizes to lipid droplets when cells are stimulated with oleate. Previous studies have shown that DGAT2 can interact with membranes and lipid droplets independently of its two transmembrane domains, suggesting the presence of an additional membrane binding domain. In order to identify additional membrane binding regions, we confirmed that DGAT2 has only two transmembrane domains and demonstrated that the loop connecting them is present in the ER lumen. Increasing the length of this short loop from 5 to 27 amino acids impaired the ability of DGAT2 to localize to lipid droplets. Using a mutagenesis approach, we were able to identify a stretch of amino acids that appears to have a role in binding DGAT2 to the ER membrane. Our results confirm that murine DGAT2 has only two transmembrane domains but also can interact with membranes via a previously unidentified helical domain containing its active site.  相似文献   

19.
Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) is a membrane enzyme that drives the final step in the formation of oils using diacylglycerol (DAG) and acyl-CoA to yield triacylglycerol (TAG). We identified a putative plant DGAT gene (TRIACYLGLYCEROL1: TAG1) and demonstrated its function by the cloning of two mutated alleles, designated AS11 (tag1-1) and ABX45 (tag1-2). One allele, AS11, has been previously characterised at the biochemical level. Mutant seeds contained less oil with a modified fatty acid profile and have reduced germination rates compared to wild-type controls. The TAG1 cDNA encodes for a 520-aa protein that possesses multiple putative transmembrane domains and shows 70 % similarity to a human DGAT cDNA.  相似文献   

20.
The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号