首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34847篇
  免费   3080篇
  国内免费   3209篇
  2024年   18篇
  2023年   442篇
  2022年   567篇
  2021年   1778篇
  2020年   1397篇
  2019年   1686篇
  2018年   1593篇
  2017年   1177篇
  2016年   1619篇
  2015年   2249篇
  2014年   2714篇
  2013年   2885篇
  2012年   3354篇
  2011年   3100篇
  2010年   1931篇
  2009年   1682篇
  2008年   1889篇
  2007年   1703篇
  2006年   1430篇
  2005年   1233篇
  2004年   927篇
  2003年   836篇
  2002年   720篇
  2001年   508篇
  2000年   500篇
  1999年   490篇
  1998年   291篇
  1997年   275篇
  1996年   293篇
  1995年   270篇
  1994年   246篇
  1993年   182篇
  1992年   239篇
  1991年   167篇
  1990年   166篇
  1989年   125篇
  1988年   88篇
  1987年   72篇
  1986年   63篇
  1985年   64篇
  1984年   32篇
  1983年   29篇
  1982年   29篇
  1981年   12篇
  1980年   8篇
  1979年   12篇
  1978年   5篇
  1976年   9篇
  1975年   10篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   
3.
Drought significantly affects the architectural development of maize inflorescence, which leads to massive losses in grain yield. However, the genetic mechanism for traits involved in inflorescence architecture in different watering environments, remains poorly understood in maize. In this study, 19 QTLs for tassel primary branch number (TBN) and ear number per plant (EN) were detected in 2 F2:3 populations under both well-watered and water-stressed environments by single environment mapping with composite interval mapping (CIM); 11/19 QTLs were detected under water-stressed environments. Moreover, 21 QTLs were identified in the 2 F2:3 populations by joint analysis of all environments with a mixed linear model based on composite interval mapping (MCIM), 11 QTLs were involved in QTL × environment interactions, seven epistatic interactions were identified with additive by additive/dominance effects. Remarkably, 12 stable QTLs (sQTLs) were simultaneously detected by single environment mapping with CIM and joint analysis through MCIM, which were concentrated in ten bins across the chromosomes: 1.05_1.07, 1.08_1.10, 2.01_2.04, 3.01, 4.06, 4.09, 5.06_5.07, 6.05, 7.00, and 7.04 regions. Twenty meta-QTLs (mQTLs) were detected across 19 populations under 51 watering environments using a meta-analysis, and 34 candidate genes were predicted in corresponding mQTLs regions to be involved in the regulation of inflorescence development and drought resistance. Therefore, these results provide valuable information for finding quantitative trait genes and to reveal the genetic mechanisms responsible for TBN and EN under different watering environments. Furthermore, alleles for TBN and EN provide useful targets for marker-assisted selection to generate high-yielding maize varieties.  相似文献   
4.
Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone.  相似文献   
5.
6.
7.
For the development of “medical foods” and/or botanical drugs as defined USA FDA, clear and systemic characterizations of the taxonomy, index phytochemical components, and the functional or medicinal bioactivities of the reputed or candidate medicinal plant are needed. In this study, we used an integrative approach, including macroscopic and microscopic examination, marker gene analysis, and chemical fingerprinting, to authenticate and validate various species/varieties of Wedelia, a reputed medicinal plant that grows naturally and commonly used in Asian countries. The anti-inflammatory bioactivities of Wedelia extracts were then evaluated in a DSS-induced murine colitis model. Different species/varieties of Wedelia exhibited distinguishable morphology and histological structures. Analysis of the ribosomal DNA internal transcribed spacer (ITS) region revealed significant differences among these plants. Chemical profiling of test Wedelia species demonstrated candidate index compounds and distinguishable secondary metabolites, such as caffeic acid derivatives, which may serve as phytochemical markers or index for quality control and identification of specific Wedelia species. In assessing their effect on treating DSS induced-murine colitis, we observed that only the phytoextract from W. chinensis species exhibited significant anti-inflammatory bioactivity on DSS-induced murine colitis among the various Wedelia species commonly found in Taiwan. Our results provide a translational research approach that may serve as a useful reference platform for biotechnological applications of traditional phytomedicines. Our findings indicate that specific Wedelia species warrant further investigation for potential treatment of human inflammatory bowel disease.  相似文献   
8.
Proteolysis of the hydroxylase component of soluble methane monooxygenase (MMO) with trypsin yielded a protein which retained 50% activity in a standard MMO assay. In an H2O2-driven assay, in which H2O2 replaced two of the protein components, NADH and O2 used in the standard assay, the proteolysed hydroxylase retained full activity for ethane, propane and propene, but had a 2–3 fold increase with methane as substrate. Several crosslinking reagents have been tested for their ability to stabilise the proteolysed form of the hydroxylase. Using polyoxyethylene bis(imidazolyl carbonyl) (Mr 3350) as the crosslinking agent, increased thermostability of the hydroxylase was observed. Activated methoxypolyethylene glycol (Mr 5000) was used to modify the hydroxylase which was now soluble in organic solvents as well as water and could be activated by H2O2. The glycol-modified hydroxylase functioned well in organic solvents in the catalysis of propene oxidation.  相似文献   
9.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
10.
近年来。笔在研究各地送鉴的大呈吉丁虫标本过程中。鉴定出一批中国新纪录种,今集中加以报道.并分别作简述如下。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号