首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Herbivores are important drivers of plant population dynamics and community composition in natural and managed systems. Intraspecific genetic diversity of long‐lived plants like trees might shape patterns of herbivory by different guilds of herbivores that trees experience through time. However, previous studies on plant genetic diversity effects on herbivores have been largely short‐term. We investigated how tree genotypic variation and diversity influence herbivory of silver birch Betula pendula in a long‐term field experiment. Using clones of eight genotypes, we constructed experimental plots consisting of one, two, four or eight genotypes, and measured damage by five guilds of arthropod herbivores twice a year over three different years (four, six and nine years after the experiment was established). Genotypes varied significantly for most types of herbivore damage, but genotype resistance rankings often shifted over time, and none of the clones was more resistant than all others to all types of herbivores. At the plot level, birch genotypic diversity had significant positive additive effect on leaf rollers and negative non‐additive effects on chewing herbivores and gall makers. In contrast, leaf‐mining and leaf‐tying damage was not influenced by birch genotypic diversity. Within diverse plots, the direction of genotypic diversity effects varied depending on birch genotype, some having lower and some having higher herbivory in mixed stands. This research highlights the importance of long‐term studies including different feeding guilds of herbivores to understand the effects of plant genetic diversity on arthropod communities. Different responses of various feeding guilds to genotypic diversity and shifts in resistance of individual genotypes over time indicate that genotypic mixtures are unlikely to result in overall reduction in herbivory over time.  相似文献   

2.
Environmental change is anticipated to negatively affect both plant and animal populations. As abiotic factors rapidly change habitat suitability, projections range from altered genetic diversity to wide-spread species loss. Here, we assess the degree to which changes in atmospheric composition associated with environmental change will influence not only the abundance, but also the genotypic/phenotypic diversity, of herbivore populations. Using free-air CO2 and O3 enrichment (FACE) technology, we assess numerical responses of pea aphids (Acyrthosiphon pisum) exhibiting a pink–green genetic polymorphism and an environmentally determined wing polyphenism on broad bean plants (Vicia faba) under enriched CO2 and/or O3 atmospheres, over multiple generations. We show that these two greenhouse gases alter not only aphid population sizes, but also genotypic and phenotypic frequencies. As the green genotype was positively influenced by elevated CO2 levels, but the pink genotype was not, genotypic frequencies (pink morph : green morph) ranged from 1 : 1 to 9 : 1. These two genotypes also displayed marked differences in phenotypic frequencies. The pink genotype exhibited higher levels of wing induction under all atmospheric treatments, however, this polyphenism was negatively influenced by elevated O3 levels. Resultantly, frequencies of winged phenotypes (pink morph : green morph) varied from 10 : 1 to 332 : 1. Thus, atmospheric conditions associated with environmental change may alter not just overall population sizes, but also genotypic and phenotypic frequencies of herbivore populations, thereby influencing community and ecosystem functioning.  相似文献   

3.
Plants possess anti‐herbivore defences that could be exploited for crop protection. The potential for deploying physical defence traits for more sustainable pest management (i.e. reduced pesticide application) has not been fully realised. Using a perennial crop (red raspberry, Rubus idaeus), we take the novel approach of quantifying within‐ and between‐genotype variation in a resistance trait, leaf trichome density, to determine precisely the effect of trichomes on host plant preference and suitability for two shoot‐feeding arthropods, the European large raspberry aphid (Amphorophora idaei) and two‐spotted spider mite (Tetranychus urticae). Additionally, we tested whether this trait influenced searching behaviour of a generalist herbivore predator (lacewing larvae, Chrysoperla carnea). Although there was no consistent genotypic variation in R. idaeus suitability for T. urticae, our hypothesis that T. urticae would avoid high leaf trichome density was supported on certain genotypes. The deterrent effect was mainly on egg deposition rather than leaf selection by adults, with up to sixfold differences in leaf preference depending on the genotypes offered. By contrast, there was significant genotypic variation in R. idaeus suitability for A. idaei (10‐fold variation in aphid abundance), but, contrary to our prediction, aphid preference and infestation levels were unrelated to leaf trichome density. Instead, A. idaei performed best on vigorous genotypes, indicating that plant tolerance traits contributed to R. idaeus suitability for aphids. Leaf trichomes had little effect on the behaviour of the beneficial control agent C. carnea larvae. We conclude that physical anti‐herbivore defences, specifically leaf trichomes, could be deployed to deter particular arthropod pests. However, the mechanistic approach adopted here is necessary to avoid antagonistic effects on other pests or on natural enemies.  相似文献   

4.
Ecosystem processes, such as plant litter decomposition, are known to be partly genetically determined, but the magnitude of genetic variation within local populations is still poorly known. We used micropropagated field-grown saplings of 19 Betula pendula genotypes, representing genetic variation in a natural birch population, to examine (1) whether genotype can explain variation in leaf litter decomposition within a local plant population, and (2) whether genotypic variation in litter decomposition is associated with genotypic variation in other plant attributes. We found that a local B. pendula population can have substantial genotypic variation in leaf litter mass loss at the early stages of the decomposition process and that this variation can be associated with genotypic variation in herbivore resistance and leaf concentrations of soluble proteins and total nitrogen (N). Our results are among the first to show that fundamental ecosystem processes can be significantly affected by truly intraspecific genetic variation of a plant species.  相似文献   

5.
Intraspecific diversity can influence the structure of associated communities, though whether litter-based and foliage-based arthropod communities respond to intraspecific diversity in similar ways remains unclear. In this study, we compared the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak effects on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, and within the herbivore and predator trophic levels. In contrast, there were minimal effects of plant genotypic diversity on litter-based microarthropods in any trophic level. Our study illustrates that incorporating communities associated with living foliage and senesced litter into studies of community genetics can lead to very different conclusions about the importance of intraspecific diversity than when only foliage-based community responses are considered in isolation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfNIC) survives as a complex mixture of genotypes (named A to I). The speed of kill, time-mortality distribution, and occlusion body (OB) production of single genotypes (A, B and F) and co-occluded mixtures of genotypes, in a 75% + 25% ratio, were compared to determine the contribution of each genotype to the transmissibility of the viral population. Pure genotypes differed markedly in their speed of kill in second instar S. frugiperda. The speed of kill of SfNIC was attenuated compared to that of the dominant genotype B, indicating that interactions involving two or more genotypes likely determine host killing traits in the virus population. Genotypes A, F and defective genotype C, had no significant effects on the distribution of insect deaths over time when present as minority components in mixtures comprising 75% of genotype B. Similarly, the mortality pattern over time of insects infected by genotype F, the fastest-killing genotype tested, was not affected by the presence of genotypes A or C. Semi-quantitative PCR studies indicated that the genetic composition did not differ significantly between SfNIC-infected insects that died soon (67 h) or late (139 h) after inoculation, suggesting that stability in genotypic composition is important for virus survival. Median OB production per insect was correlated with mean time to death so that attenuated speed of kill of SfNIC resulted in high OB yields. We conclude that (i) minority genotypes play a functional role in determining the timing of mortality of infected hosts and (ii) the genotypic structure of the virus population is stably maintained to maximize the likelihood of survival.  相似文献   

7.
While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore—the Japanese beetle (Popillia japonica)—increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.  相似文献   

8.
Both theoretical and empirical works have highlighted the difference in the evolutionary implications of host resistance and tolerance against their enemies. However, it has been difficult to show evolutionary changes in host defences in natural populations; thus, evaluating theoretical predictions of simultaneous evolution of defences remains a challenge. We studied the evolutionary changes in traits related to resistance and tolerance against herbivory in a natural plant population using seeds from two collections made in a period of 20 years. In a common garden experiment, we compared defensive traits of ancestral (1987) and descendant (2007) subpopulations of the annual plant Datura stramonium that shows genetic variation for tolerance and to which the specialist herbivore Lema daturaphila is locally adapted. We also examined the effects of different plant genotypes on the herbivore for testing the plant genetic variation in resistance. Based on the response to the contemporary herbivore populations, results revealed a nonsignificant response in plant resistance traits (herbivore consumption, foliar trichomes and tropane alkaloids), but a significant one in tolerance. The survival of herbivores in laboratory experiments depended on the plant genotype, which suggests genetic variation in plant resistance. Although we cannot identify the selective agent for the change nor exclude genetic drift, the results are consistent with the expectation that when resistance fails to control herbivory, tolerance should play a more important role in the evolution of the interaction.  相似文献   

9.
Understanding the role of consumers in density‐dependent plant population dynamics is a long‐standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context‐dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field experiment replicated across eight sites in eastern Nebraska. Using hierarchical Bayesian analysis and density‐dependent population models, we found potential for explosive low‐density population growth (λ > 5) and complex density fluctuations under herbivore exclusion. However, herbivore access drove population decline (λ < 1), suppressing complex fluctuations. While plant–herbivore interaction outcomes are famously context‐dependent, we demonstrated that herbivores suppress potentially invasive populations throughout our study region, and this qualitative outcome is insensitive to environmental context. Our novel use of Bayesian demographic modelling shows that native insect herbivores consistently prevent hard‐to‐predict fluctuations of weeds in environments otherwise susceptible to invasion.  相似文献   

10.

Using a mechanistic spatially explicit trait-based neighborhood-model, we quantify the impact of mutations on intraspecific spatial interactions to better understand mechanisms underlying the maintenance of genetic variation and the potential effects of these evolved interactions on the population dynamics of Arabidopsis thaliana. We use 100 twenty-fifth generation mutation accumulation (MA) lines (genotypes) derived from one founder genotype to study mutational effects on neighbor responses in a field experiment. We created individual-based maps (15,000 individuals), including phenotypic variation, to quantify mutational effects within genotypes versus between genotypes on reproduction and survival. At small-scale (within 80 cm of the focal plant), survival is enhanced but seed-set is decreased when a genotype is surrounded by different genotypes. At large-scale (within 200 cm of the focal plant), seed set is facilitated by different genotypes while the same genotype has either no effect or negative effects. The direction of the interactions among MA lines suggests that at small scale these interactions may contribute to the maintenance of genetic variation and at large scale contribute to the survival of the population. This may suggest, that, mutations potentially have immediate effects on population and community dynamics by influencing the outcome of competitive and faciliatory interactions among conspecifics.

  相似文献   

11.
Heterozygous mutations in LHX4 are associated with combined pituitary hormone deficiency. In this study, the polymorphism of LHX4-HaeIII locus was revealed in 822 individuals from four Chinese cattle breeds. The PCR–RFLP analysis showed that there were three genotypes: GG, GA, AA. The frequencies of genotype GG ranged from 0.6620 to 0.9789 in analyzed populations. The genotypic frequencies of LHX4 locus in the four populations all agreed with Hardy–Weinberg equilibrium (P > 0.05). Distributions of genotypic frequencies of different breeds (QC, NY, JX, CH) at this locus were found to be significantly different based on a χ 2 test (P < 0.001). The genetic diversity analysis revealed the JX cattle possessed intermediate genetic diversity, and the other three Chinese cattle breeds belonged to poor genetic diversity. Correlation analysis with growth traits in the NY breed indicated that: the animals with genotype GA had greater body weight than those with genotype GG (P < 0.05); the animals with GA genotype owned significantly longer body length than the ones with GG genotype (P < 0.05) at 18 and 24 months.  相似文献   

12.
13.
Damage caused by insect herbivores, notably Asian rice gall midge, Orseolia oryzae is more prevalent in the rice-growing belts of India's southern and north-eastern states. As a prelude to resistant cultivar development, the identification of genomic regions for resistance in the source population is crucial. In the present investigation, 202 rice genotypes were phenotyped and assayed with genomic markers reported for gall midge resistance. Positive skewness and platykurtic distribution of response scores suggested the inheritance of gall midge resistance in the study population. The marker gm3del3 contributed the most genetic variation, followed by RM28574 and marker RM22709 explained minimal variation. A marker-trait association analysis with a single marker-trait linear regression approach was performed to discover gall midge resistant genomic region/genes. The marker RM17480 on chromosome 4 reported to be linked with gm3 gene was found significantly associated with the gall midge resistance genomic region with allelic effects in a negative direction favouring resistance reaction. The allelic effects of significantly associated markers were correlated significantly with the phenotypic variation of gall midge damage scores. Genes identified in the vicinity of this marker contribute to stress response reactions in rice plants. The 200 bp allele of the marker was associated with susceptibility, while the 250 bp allele was associated with resistance expression. This allelic association with trait variation suggests the importance of associated marker for utilisation in marker-assisted selection programmes to incorporate resistance alleles into elite rice genotypes.  相似文献   

14.
Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three‐species plant‐aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi‐parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host‐plant community than in a genetic monoculture, with host‐plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host‐plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host‐plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes.  相似文献   

15.
16.
Host plant traits can play a significant role in influencing the importance, direction and intensity of tri-trophic interactions by both direct and indirect pathways. A major goal in applied tri-trophic research has been to determine whether breeding for host plant resistance traits can be combined with biological control to develop a more comprehensive control strategy. An important component of developing such a strategy is understanding how host resistance traits affect natural enemy–prey interactions for important pest insects. Here we examine the influence of genotypic variation in stem solidity, the primary trait conferring resistance against the wheat stem sawfly, Cephus cinctus, on parasitism of this major pest of wheat by its native braconid parasitoids. To do so, we conducted a field experiment in which we established replicate plots of 23 wheat genotypes that varied in levels of stem solidity, and quantified herbivore abundance and levels of parasitism across three sites in two years. Increasing stem solidity was associated with an approximately four-fold reduction in average parasitism rates, both across experimental plots and across wheat genotypes. Our analyses suggest that these effects were primarily direct, rather than indirectly mediated via effects of stem solidity on herbivore infestation levels or density. Interestingly, wheat genotype also had a significant influence on levels of parasitism, independent of its effects on stem solidity. Overall, our results suggest that although increasing stem solidity generally reduces parasitism, significant genotypic variability in average parasitism levels exist within solidity categories. Thus it may be possible to select resistant solid stemmed genotypes that also maintain relatively high parasitism levels. To our knowledge, our study is among the first to demonstrate a strong direct effect of genotypic variation in stem solidity on parasitism of grass mining insects, with important applied implications.  相似文献   

17.
Although the effects of plant diversity on herbivores are contingent upon herbivore traits and the source of plant diversity (e.g. intra‐ and interspecific), most studies have analyzed these effects separately. We compared the effects of genotypic diversity of big‐leaf mahogany Swietenia macrophylla with that of tree species diversity on two specialist caterpillars (Hypsipyla grandella stem borers and Phyllocnistis meliacella leaf miners) and three generalist leafhoppers (Cicadellidae) feeding on mahogany in a large‐scale (7.2 ha) forest diversity experiment in southern Mexico. The experiment consisted of fifty‐nine 21 × 21‐m plots, with 64 tree saplings each (3‐m spacing between plants). Plots were either mahogany monocultures or species polycultures of four species (including mahogany) and – within each of these two plot types – mahogany was represented by either one or four genotypes. Throughout a five‐month period, beginning six months after planting, we measured mahogany growth and monitored herbivore and predator (spider) abundance. We found no effect of mahogany genotypic diversity on either specialist caterpillars or generalist leafhoppers, and this result was consistent across levels of tree species diversity. In contrast, species diversity had significant effects on both specialists but neither of the generalist herbivores. Specifically, species diversity lowered H. grandella attack at the middle of the sampling season, but increased attack at the end of the season, whereas P. meliacella abundance was consistently reduced. Such effects were not mediated by effects of species diversity on plant growth (of which there were none), but rather through resource heterogeneity. Diversity did not influence spider abundance. This study is one of few to directly compare sources of plant diversity, and uniquely compares such effects among herbivores with contrasting life histories (e.g. diet breadths). Overall, we demonstrate that plant species diversity effects outweigh those of genotypes, and our results suggest that such effects are stronger on specialist than generalist herbivores.  相似文献   

18.
Wild barley (Hordeum spontaneum), the progenitor of cultivated barley, is an important genetic resource for cereal improvement. Selenium (Se) is an essential trace mineral for humans and animals with antioxidant, anticancer, antiarthropathy, and antiviral effects. In the current study, the grain Se concentration (GSeC) of 92 H. spontaneum genotypes collected from nine populations representing different habitats in Israel was investigated in the central area of Guizhou Province, China. Remarkable variations in GSeC were found between and within populations, ranging from 0 to 0.387 mg kg−1 among the 92 genotypes with an average of 0.047 mg kg−1. Genotype 20_C from the Sede Boqer population had the highest GSeC, while genotype 25_1 from the Atlit population had the lowest. The mean value of GSeC in each population varied from 0.010 to 0.105 mg kg−1. The coefficient of variation for each population ranged from 12% to 163%. Significant correlations were found between GSeC and 12 ecogeographical factors out of 14 studied. Habitat soil type also significantly affected GSeC. The wild barley exhibited wider GSeC ranges and greater diversity than its cultivated counterparts. The higher Se grain concentrations found in H. spontaneum populations suggest that wild barley germplasm confer higher abilities for Se uptake and accumulation, which can be used for genetic studies of barley nutritional value and for further improvement of domesticated cereals.  相似文献   

19.
1. As trees age, they undergo significant physiological and morphological changes. Nevertheless, tree ontogeny and its impacts on herbivores are often overlooked as determinants of plant–herbivore population dynamics and the strength of plant–herbivore interactions. 2. Juniperus (Cupressaceae) is a dominant, long‐lived conifer that serves as the sole host to a specialised assemblage of caterpillars. Over the past 150 years, several juniper species in western North America have expanded their geographic occupancy at local and regional scales, which has resulted in an increase in the number of immature trees on the landscape. Using assays in the laboratory, the effects of tree ontogeny on caterpillar performance and oviposition preference for two juniper specialist caterpillars, Callophrys gryneus (Lycaenidae) and Glena quinquelinearia (Geometridae), were examined. The study considered whether responses to tree ontogeny were consistent across caterpillar species and juniper host species. 3. Tree age was found to be a reliable predictor of caterpillar performance, with caterpillars developing more quickly and growing larger when fed foliage from young trees. Differences in the phytochemical diversity between foliage from trees of different ages might help to explain observed differences in caterpillar performance. Interestingly, the specialist butterfly, C. gryneus, displayed an oviposition preference for foliage from old‐growth Juniperus osteosperma trees, despite the fact that larvae of this species performed poorly on older trees. 4. It is concluded that young juniper trees are an important resource for the specialised Lepidopteran community and that tree ontogeny is an important component of intraspecific variation, which contributes to the structure of plant–herbivore communities.  相似文献   

20.
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 (14C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant’s own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in 14C import, suggesting strong genetic control of sink–source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more 14C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号