首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterised the apoptotic defects in cells null for cytochrome c (cyt c-/-). Such cells treated with staurosporine (STS) exhibited translocation to the mitochondria and activation of the proapoptotic signalling molecule Bax but failed to release Smac/DIABLO from these organelles, judged by both confocal microscopy and Western blotting. While reference cells expressing cytochrome c released both it and Smac/DIABLO under a variety of conditions of apoptotic induction, we have never observed release of Smac/DIABLO from cyt c-/- cells. We eliminate the possibility that proteasomal degradation of cytosolically localised Smac/DIABLO is responsible for our failure to visualise the protein outside the mitochondria. Our findings indicate an unanticipated nexus between release of cytochrome c and Smac/DIABLO from mitochondria, previously thought to be a more or less synchronised event early in apoptosis. We suggest that the failure of cyt c-/- cells to release Smac/DIABLO after recruitment of Bax to mitochondria represents an extreme manifestation of some inherent difference in the regulation of release of these two proteins from mitochondria.  相似文献   

2.
Smac/DIABLO, a pro-apoptotic protein released from mitochondrial intermembrane space during apoptosis, promotes caspase activation by IAPs neutralization. The kinetics and molecular mechanism of Smac/DIABLO release from mitochondria has remained obscure. Homeostatic confocal microscopy, for the first time, showed the precise kinetics of Smac/DIABLO release from mitochondria during CPT-induced apoptosis in living MCF-7 cells. The time pattern of Smac/DIABLO escape from mitochondria comprised two phases: the initial phase of gradual protein release, followed by the second phase of plateau, appearing after 24 min of cell exposure to the drug. A similar pattern was observed during oxidative stress. The dynamics of Smac/DIABLO redistribution was confirmed by different methods: traditional confocal microscopy, immunoelectron microscopy and laser scanning cytometry. The inhibition of m-calpain prevented Smac/DIABLO release from mitochondria, which confirmed the involvement of Bax in the process. Acquired results indicate that CPT treatment triggers Bax-dependent release of Smac/DIABLO from mitochondria simultaneously with the efflux of cytochrome c.  相似文献   

3.
Smac/DIABLO is a mitochondrial protein that potentiates some forms of apoptosis, possibly by neutralizing one or more members of the IAP family of apoptosis inhibitory proteins. Smac has been shown to exit mitochondria and enter the cytosol during apoptosis triggered by UV- or gamma-irradiation. Here, we report that Smac/DIABLO export from mitochondria into the cytosol is provoked by cytotoxic drugs and DNA damage, as well as by ligation of the CD95 death receptor. Mitochondrial efflux of Smac/DIABLO, in response to a variety of pro-apoptotic agents, was profoundly inhibited in Bcl-2-overexpressing cells. Thus, in addition to modulating apoptosis-associated mitochondrial cytochrome c release, Bcl-2 also regulates Smac release, suggesting that both molecules may escape via the same route. However, whereas cell stress-associated mitochondrial cytochrome c release was largely caspase independent, release of Smac/DIABLO in response to the same stimuli was blocked by a broad-spectrum caspase inhibitor. This suggests that apoptosis-associated cytochrome c and Smac/DIABLO release from mitochondria do not occur via the same mechanism. Rather, Smac/DIABLO efflux from mitochondria is a caspase-catalysed event that occurs downstream of cytochrome c release.  相似文献   

4.
A key step in the initiation of apoptosis is the release from the mitochondrial intermembrane space of cytochrome c and other pro-apoptotic proteins such as Smac/DIABLO, Omi/HtrA2, apoptosis-inducing factor (AIF), and endonuclease G (EndoG). Discrepancies have arisen, however, as to whether all these proteins are released in different systems. Our results suggest that failure to observe cytochrome c release may be due to the use of different buffers because after permeabilization by caspase-8 cleaved human Bid (tBid), cytochrome c dissociation from mitochondria was highly dependent on ionic strength and required 50-80 mm KCl, NaCl, or LiCl. In addition, mitochondria isolated from apoptotic cells using low ionic strength buffer bound a greater proportion of endogenous cytochrome c. In contrast to cytochrome c, Smac/DIABLO and Omi/HtrA2 were released independent of ionic strength, and AIF and EndoG behaved as if they are exposed to the intermembrane space but tethered to or within the inner membrane. AIF and EndoG were also not released by active caspases, which suggests their involvement in apoptosis may be limited. In summary, whereas tBid permeabilizes the outer membrane to cytochrome c, Smac/DIABLO, and Omi/HtrA2, the release of cytochrome c during apoptosis will be underestimated unless sufficient ionic strength is maintained to overcome the electrostatic association of cytochrome c with membranes.  相似文献   

5.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

6.
HL-60 cell differentiation into neutrophil like cells is associated with their induction of apoptosis. We investigated the cellular events that occur pre and post mitochondrial permeability transition to determine the role of the mitochondria in the induction of differentiation induced apoptosis. Pro-apoptotic Bax was translocated to and cleaved at the mitochondrial membrane in addition to t-Bid activation. These processes contributed to mitochondrial membrane disruption and the release of cytochrome c and Smac/DIABLO. The release of cytochrome c was caspase independent, as the caspase inhibitor Z-VAD.fmk, which inhibited apoptosis, did not block the release of cytochrome c. In contrast, the release of Smac/DIABLO was partially inhibited by caspase inhibition indicating differential release pathways for these mitochondrial pro-apoptotic factors. In addition to caspase inhibition we assessed the effects of the Bcl-2 anti-apoptotic family on differentiation induced apoptosis. BH4-Bcl-xl-TAT recombinant protein did not delay apoptosis, but did block the release of cytochrome c and Smac/DIABLO. Bcl-2 over-expression also inhibited differentiation induced apoptosis but was associated with the inhibition of the differentiation process. Differentiation mediated mitochondrial release of cytochrome c and Smac/DIABLO, may not trigger the induction of apoptosis, as BH4-Bclxl-TAT blocks the release of pro-apoptotic factors from the mitochondria, but does not prevent apoptosis.  相似文献   

7.
We examined the temporal and causal relationship between Smac/DIABLO release, cytochrome c (cyt-c) release, and caspase activation at the single cell level during apoptosis. Cells treated with the broad-spectrum caspase inhibitor z-VAD-fmk, caspase-3 (Casp-3)-deficient MCF-7 cells, as well as Bax-deficient DU-145 cells released Smac/DIABLO and cyt-c in response to proapoptotic agents. Real-time confocal imaging of MCF-7 cells stably expressing Smac/DIABLO-yellow fluorescent protein (YFP) revealed that the average duration of Smac/DIABLO-YFP release was greater than that of cyt-c-green fluorescent protein (GFP). However, there was no significant difference in the time to the onset of release, and both cyt-c-GFP and Smac/DIABLO-YFP release coincided with mitochondrial membrane potential depolarization. We also observed no significant differences in the Smac/DIABLO-YFP release kinetics when z-VAD-fmk-sensitive caspases were inhibited or Casp-3 was reintroduced. Simultaneous measurement of DEVDase activation and Smac/DIABLO-YFP release demonstrated that DEVDase activation occurred within 10 min of release, even in the absence of Casp-3.  相似文献   

8.
Hyperosmotic shock induces cytochrome c release and capase-3 activation in Xenopus oocytes, but the regulators and signaling pathways involved are not well characterized. Here we show that hyperosmotic shock induces rapid calpain activation and high levels of Smac/DIABLO release from the mitochondria before significant amounts of cytochrome c are released to promote caspase-3 activation. Calpain inhibitors or EGTA microinjection delays osmostress-induced apoptosis, and blockage of Smac/DIABLO with antibodies markedly reduces cytochrome c release and caspase-3 activation. Hyperosmotic shock also activates the p38 and JNK signaling pathways very quickly. Simultaneous inhibition of both p38 and JNK pathways reduces osmostress-induced apoptosis, while sustained activation of these kinases accelerates the release of cytochrome c and caspase-3 activation. Therefore, at least four different pathways early induced by osmostress converge on the mitochondria to trigger apoptosis. Deciphering the mechanisms of hyperosmotic shock-induced apoptosis gives insight for potential treatments of human diseases that are caused by perturbations in fluid osmolarity.  相似文献   

9.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

10.
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.  相似文献   

11.
12.
13.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   

14.
Apoptotic response of keratinocytes to UVB irradiation has physiological significance on photocarcinogenesis. Here, we show that the sustained release of Smac/DIABLO from mitochondria is an important event for the onset of apoptosis in keratinocytes exposed to UVB irradiation. In human keratinocyte HaCaT cells, UVB irradiation at 500 J/m2, but not at 150 J/m2, induces apoptosis. Significant activations of caspases-9 and -3, and slight activation of caspase-7 were observed only in 500 J/m2 UVB irradiated HaCaT cells. Correspondingly, the cleavage of PARP, a substrate of caspases-3 and -7, was detected in cells irradiated at 500 J/m2 UVB, but not at 150 J/m2. However, with both 150 and 500 J/m2 UVB irradiation, cytochrome c, an activator of caspase-9 via the formation of apoptosome, was released from mitochondria to the cytosol at the same extent. In contrast, significant amounts of Smac/DIABLO are released from mitochondria to the cytosol only with 500 J/m2 UVB irradiation, and that the level of XIAP is decreased. These results suggest that the extent of Smac/DIABLO efflux from mitochondria is a determinant whether a cell will undergo apoptosis or survival.  相似文献   

15.
Smac (second mitochondrial activator of caspases) is released from the mitochondria during apoptosis to relieve inhibition of caspases by the inhibitor of apoptosis proteins (IAPs). The release of Smac antagonizes several IAPs and assists the initiator caspase-9 and effector caspases (caspase-3, caspase-6, and caspase-7) in becoming active, ultimately leading to death of the cell. Translocation of Smac along with cytochrome c and other mitochondrial pro-apoptotic proteins represent important regulatory checkpoints for mitochondria-mediated apoptosis. Whether Smac and cytochrome c translocate by the same mechanism is not known. Here, we show that the time required for Smac efflux from the mitochondria of cells subjected to staurosporine-induced apoptosis is approximately four times longer than the time required for cytochrome c efflux. These results suggest that Smac and cytochrome c may exit the mitochondria by different pathways.  相似文献   

16.
Smac/DIABLO is a mitochondrial protein that is released along with cytochrome c during apoptosis and promotes cytochrome c-dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs). We provide evidence that Smac/DIABLO functions at the levels of both the Apaf-1-caspase-9 apoptosome and effector caspases. The N terminus of Smac/DIABLO is absolutely required for its ability to interact with the baculovirus IAP repeat (BIR3) of XIAP and to promote cytochrome c-dependent caspase activation. However, it is less critical for its ability to interact with BIR1/BIR2 of XIAP and to promote the activity of the effector caspases. Consistent with the ability of Smac/DIABLO to function at the level of the effector caspases, expression of a cytosolic Smac/DIABLO in Type II cells allowed TRAIL to bypass Bcl-xL inhibition of death receptor-induced apoptosis. Combined, these data suggest that Smac/DIABLO plays a critical role in neutralizing IAP inhibition of the effector caspases in the death receptor pathway of Type II cells.  相似文献   

17.
TIP30 (Tat-interacting protein 30), a newly found proapoptotic factor, appears to be involved in multiple functions including metabolic suppression, apoptosis induction, and diminishing angiogenic properties. In the present study, we reported that mitochondrial events were required for apoptosis induced by TIP30 in hepatocellular carcinoma cells (HCC cells). Translocation of Bax was essential for TIP30-induced apoptosis, whereas overexpression of the anti-apoptotic protein Bcl-xL delayed both second mitochondria-derived activator of caspases (Smac/DIABLO) release and onset of apoptosis. Furthermore, TIP30-induced apoptosis was dependent on caspase activity because the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (z-VAD-fmk) blocked DNA fragmentation. Release of Smac/DIABLO from the mitochondria through the TIP30-P53-Bax cascade was required to remove the inhibitory effect of XIAP (X-linked Inhibitor of Apoptosis) and allowed apoptosis to proceed. Our results showed for the first time that Bax-dependent release of Smac/DIABLO, cytochrome c and AIF from the mitochondria mediated the contribution of the mitochondrial pathway to TIP30-mediated apoptosis. Our data suggested that adenovirus-mediated overexpression of TIP30 was capable of inducing therapeutic programmed cell death in vitro by activating the mitochondrial pathway of apoptosis. On the basis of these studies, elucidating the mechanism by which TIP30 induces cell death might establish it as an anticancer approach.  相似文献   

18.
19.
Cytotoxic agents eliminate tumor cells via different mechanisms including apoptosis, although this process is not equally efficient in all kinds of cancer cells. Thus, small cell lung carcinomas (SCLCs) are more sensitive than non-small cell lung carcinomas (NSCLCs) to therapy-induced killing. During apoptosis, several apoptogenic proteins release from the mitochondria. Among these proteins is Smac/DIABLO. Overexpression of Smac effectively potentiates apoptosis by neutralizing the caspase-inhibitory function of the inhibitors of apoptosis proteins (IAPs). However, the physiological relevance of endogenously released Smac in the promotion of malignant cell death is still unclear. Analysis of a panel of human lung cancer cell lines revealed that there is no altered Smac expression in NSCLC and SCLC that might initially impair the drug-induced cell death. Upon engagement of the mitochondrial pathway of apoptosis, etoposide provoked cytosolic accumulation of Smac along with cytochrome c and loss of the mitochondrial membrane potential. Most of these events as well as nuclear apoptotic changes required caspase activation in SCLC, but not in NSCLC. Unexpectedly, pan-caspase inhibition had no effect on Smac release. Co-treatment of SCLC with the IAP-binding peptide Smac-N7 enhanced etoposide-induced apoptosis in a concentration-dependent manner, whereas Smac downregulation by small interfering RNA (siRNA) did not influence caspase-3/-7 activities, nuclear morphological changes, DNA fragmentation, and plasma membrane integrity. Release of cytochrome c and mitochondrial protease Omi/HtrA2 is still detectable at these conditions. These data suggest that Smac deficiency may be compensated for by action of redundant determinants to kill cancer cells. Thus, translocation of endogenous Smac into cytosol does not play a critical role in cell death of human lung carcinoma after etoposide treatment.  相似文献   

20.
Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells   总被引:3,自引:0,他引:3  
We have investigated the role of the mitochondrial pathway during cell death following serum and nerve growth factor (NGF)/dibutyryl cyclic AMP (Bt(2)cAMP) withdrawal in undifferentiated or NGF/Bt(2)cAMP-differentiated PC12 cells, respectively. Holocytochrome c, Smac/DIABLO, and Omi/HtrA2 are released rapidly following trophic factor deprivation in PC12 cells. Bcl-2 and Akt inhibited this release. The protection, however, persisted longer in differentiated PC12 cells. In differentiated, but not undifferentiated cells, Bcl-2 and Akt also inhibited apoptosis downstream of holocytochrome c release. Thus, undifferentiated PC12 cells showed marked sensitivity to induction of apoptosis by microinjected cytochrome c even in the presence of NGF, Bcl-2, or Akt. In contrast, in differentiated cells these factors suppressed cell death. Consistent with these observations, in vitro processing of procaspase 9 in response to cytochrome c was observed in extracts from undifferentiated but not differentiated cells expressing Akt or Bcl-2. Endogenous caspase 9 was cleaved during cell death, whereas dominant negative caspase 9 inhibited cell death. The results from determining the role of inhibitors of apoptosis (IAPs) suggest that acquisition of inhibition by IAPs is part of the differentiation program. Ubiquitin-DeltaN-AVPI Smac/DIABLO induced cell death in differentiated cells only. c-IAP-2 is unregulated in differentiated cells, whereas X-linked IAP levels decreased in these cells coincident with cell death. Moreover, expressing X-linked IAP rendered undifferentiated cells resistant to microinjected cytochrome c. Overall, the inhibitory regulation, of cell death at the level of release of mitochondrial apoptogenic factors and at post-mitochondrial activation of caspase 9 observed in differentiated PC12 cells, is reduced or absent in the undifferentiated counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号