首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
污水脱氮功能微生物的组学研究进展   总被引:3,自引:1,他引:2  
生物脱氮是污水处理厂的核心,掌握生物脱氮过程相关微生物代谢特性,对于探索微生物资源和提高污水处理厂脱氮性能具有重要意义。近年来,分子生物学方法不断发展和改进,已被广泛应用于揭示脱氮微生物群落多样性、组成结构和潜在功能等方面,大幅提升了研究者们对污水生物脱氮系统中微生物,尤其是不可培养微生物的代谢机理、抑制调控原理及新型生物脱氮工艺途径的认识。本文对流行的分子生物学方法(16S rRNA基因测序、实时荧光定量PCR技术、宏基因组学、宏转录组学、宏蛋白质组学和代谢组学)进行了介绍,综述了其在硝化细菌、反硝化细菌、完全氨氧化细菌、厌氧氨氧化细菌、厌氧铁氨氧化细菌、硫酸盐型厌氧氨氧化细菌及亚硝酸盐/硝酸盐型厌氧甲烷氧化微生物等方面的研究进展,阐明了这些氮素转化微生物在氮循环过程的代谢途径和酶促反应,并从标准测定方法构建、不同方法的联用及跨学科结合和检测方法的简易化这3个方面展望了分子生物学方法的技术突破及其在污水生物处理系统中的应用前景。本综述从系统角度全面认识脱氮微生物群落及其结构,为未来污水处理生物脱氮微生物的研究提供了新方向。  相似文献   

2.
土壤氮素转化的关键微生物过程及机制   总被引:47,自引:0,他引:47  
微生物是驱动土壤元素生物地球化学循环的引擎.氮循环是土壤生态系统元素循环的核心之一,其四个主要过程,即生物固氮作用、氨化作用、硝化作用、反硝化作用,均由微生物所驱动.近10年来,随着免培养的分子生态学技术和高通量测序技术等的发展,在硝化微生物多样性及其作用机理、厌氧氨氧化过程和机理等研究方面取得了突破性进展.本文重点阐述了我国有关土壤硝化微生物方面的研究进展,在此基础上,简要介绍了反硝化微生物和厌氧氨氧化及硝酸盐异化还原成铵作用的研究进展,并对今后的研究工作提出了展望.今后土壤氮素转化微生物生态学的研究,应瞄准国际微生生态学发展的前沿,加强新技术新方法的应用,结合我国农业可持续发展、资源环境保护和全球变化研究的重大需求,重点开展以下几方面的工作:(1)开展大尺度上土壤硝化作用及氨氧化微生物分布的时空演变特征及驱动因子的研究;(2)加强氮素转化关键微生物过程与机理的研究,并与相关过程的通量(如氨挥发、N2O释放)和反应速率(如矿化速率、硝化速率)关联起来;(3)在特定生态系统中系统研究各个氮转化过程的耦合关系,构建相关氮素转化和氮素平衡模型,为定向调控土壤氮素转化过程,提高氮素利用效率并减少其负面效应提供科学依据.  相似文献   

3.
微生物在近海氮循环过程的贡献与驱动机制   总被引:1,自引:0,他引:1  
人类活动导致海岸带氮超载而富营养化,进而引起更多的生态环境问题.在全球变化背景下,进一步揭示微生物驱动的氮循环过程的驱动机制及贡献,对评价与预测近海生态系统服务功能变化、管理决策等至关重要.本文介绍了固氮、氨化、硝化、反硝化、硝酸盐铵化、厌氧氨氧化过程在近海多种生境沉积物中的生物地球化学(速率、通量、贡献)与微生物生态学(功能类群丰度)特征及时空变化规律,阐述温度、溶氧、盐度、活性溶解有机碳、无机氮、沉水植物、底栖动物活动等因素对各过程速率的影响及对各竞争性类群或过程(氨氧化细菌/氨氧化古菌,反硝化/硝酸盐铵化/厌氧氨氧化)的调控机制,并简析了海岸带微生物氮循环研究所面临的机遇与挑战.  相似文献   

4.
氨氧化微生物生态学与氮循环研究进展   总被引:43,自引:3,他引:40  
贺纪正  张丽梅 《生态学报》2009,29(1):406-415
氮的生物地球化学循环主要由微生物驱动,除固氮作用、硝化作用、反硝化作用和氨化作用外,近年还发现厌氧氨氧化是微生物参与氮循环的一个重要过程.同时,随着宏基因组学等分子生物技术的快速发展和应用,参与氮循环的新的微生物类群--氨氧化古菌也逐渐被发现.这两个重要的发现大大改变了过去人们对氮循环的认识,就近年有关厌氧氨氧化细菌、氨氧化古菌和氨氧化细菌的生态学研究进展作一简要综述.  相似文献   

5.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

6.
海洋氮循环中细菌的厌氧氨氧化   总被引:5,自引:0,他引:5  
细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应.厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群.而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右.由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响.另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础.  相似文献   

7.
热泉微生物是驱动热泉氮(N)循环的主导力量,开展热泉生态系统中驱动氮循环微生物种群构成及其与环境响应的研究,对于探索热泉中氮的生物地球化学循环、生命进化、生物修复等方面都具有重要的理论和应用价值。本文综合阐述了热泉生态系统驱动氮循环的功能微生物(如固氮菌、氨氧化菌、厌氧氨氧化菌、反硝化菌、异化硝酸盐还原菌)在系统发育学上的分布、功能基因的相对丰度、活性及其与环境因子(如温度、pH)的相关性等方面的研究现状和亟待解决的问题。并展望了热泉生境中驱动氮循环微生物未来的研究方向。  相似文献   

8.
为探究生物电化学强化厌氧氨氧化(anaerobic ammonia oxidation,anammox)脱氮作用过程,采用双室微生物电解池(microbial electrolysis cell,MEC)富集电活性微生物,构建耦合厌氧氨氧化阴极的生物电化学系统。具体地,在外加0.2 V电压条件下改变不同总氮进水浓度于30°C进行暗培养批次实验研究,结合循环伏安法、电化学阻抗谱、高通量测序方法等多种表征手段研究了强化脱氮机理。结果表明,在初始总氮浓度分别为200、300和400 mg/L时对应获得了96.9%±0.3%、97.3%±0.4%和99.0%±0.3%的总氮去除率,且阴极电极生物膜表现出良好的电化学活性。高通量测序结果表明外加电压富集了除厌氧氨氧化菌以外的其他脱氮功能菌群:反硝化菌(Denitratisoma)、Limnobacter和氨氧化菌SM1A02和Anaerolineaceae、亚硝化菌(Nitrosomonas europaea)和硝化螺菌属(Nitrospira)等,这些具有电化学活性的微生物构成了体系的氨氧化胞外产电菌(ammonium oxidizing exoelectrogens,AOE)和反硝化电养菌(denitrifying electrotrophs,DNE),它们连同厌氧氨氧化菌Candidatus Brocadia构成了系统的脱氮微生物群落结构。AOE和DNE的种间直接电子传递作用协同厌氧氨氧化是强化系统总氮去除的关键原因。  相似文献   

9.
微生物基因数据库在氮循环功能基因注释中的应用   总被引:5,自引:2,他引:3  
张博雅  余珂 《微生物学通报》2020,47(9):3021-3038
氮循环是微生物和化学过程介导的生物地球化学循环。利用基因测序技术研究环境中参与氮循环的微生物群落、微生物及功能基因,是环境基因组学和微生物生态学的重要研究热点。近年来,各种类型的数据库被开发并应用到功能分析中。本文结合时下最新研究成果,聚焦由微生物引起的同化硝酸盐还原作用、异化硝酸盐还原作用、反硝化作用、固氮作用、硝化作用(包括完全氨氧化作用)和厌氧氨氧化作用等6种无机氮循环途径的功能基因,对比了National Center for Biotechnology Information (NCBI)、Integrated Microbial Genomes (IMG)、Universal Protein (UniProt)、Kyoto Encyclopedia of Genes and Genomes (KEGG)、Protein Families (Pfam)、Functional Gene (FunGene)、Clusters of Orthologous Groups (COG)和NCycDB等数据库的设计理念和功能特点,并结合环境介质、表征基因、分析方法和比对方法等影响因素,分析了以上数据库在氮循环功能基因注释中的选择及应用方式,展望了未来氮循环基因数据库的发展方向,以期为研究人员了解氮循环基因家族和选择合适的数据分析平台提供参考。  相似文献   

10.
研究不同土地利用方式下氮循环相关微生物在不同土壤剖面的分布,可为认识和理解土壤氮转化过程提供科学依据。土壤氨氧化微生物和反硝化微生物在调节氮肥利用率、硝态氮淋溶和氧化亚氮(N2O)排放等方面有着重要作用。以北京郊区农田和林地两种土地利用方式为研究对象,分析土壤氨氧化潜势和亚硝酸盐氧化潜势在0—100 cm土壤剖面上的季节分布(春季和秋季),并通过实时荧光定量PCR方法表征土壤氨氧化和反硝化微生物的时空分布特征。结果表明,农田土壤氨氧化潜势、亚硝酸盐氧化潜势、氨氧化微生物和反硝化微生物丰度均显著高于林地土壤,且随土壤深度增加而显著降低。除氨氧化古菌amoA基因丰度在不同季节间无显著差异外,春季土壤氨氧化细菌(amoA基因)、反硝化微生物nirS、nirK和典型nosZ I基因的丰度均显著高于秋季。土壤有机质、总氮、NH~+4-N、NO~-3-N含量与氨氧化微生物和反硝化微生物的功能基因丰度显著相关。综上,不同土地利用方式下土壤氮循环相关微生物的丰度与土壤氮素的可利用性和转化过程紧密相关,研究结果对土壤氮素利用和养分管理提供...  相似文献   

11.
木质素在海洋中的生物转化及其对海洋碳循环的影响   总被引:1,自引:0,他引:1  
彭倩楠  林璐 《微生物学报》2020,60(9):1959-1971
微型生物参与的海洋碳汇是海洋重要的储碳途径,可调节全球气候变化。木质素是地球上第二大光合而成的碳库,其在海洋中的生物地球化学过程与海洋碳循环密切相关。异养微生物所主导的代谢活动是木质素生物转化的主要途径。近年来,迅速发展的高通量测序技术与传统微生物技术相结合,在探索自然生境中木质素代谢菌群,发现木质素代谢新物种,挖掘相关功能基因等方面已取得一系列成果。然而绝大多数的研究主要集中于陆地生态系统,对于海洋生态系统的研究仍较少。陆源有机碳在海洋中的转化过程仍是一个"谜",故解析海洋木质素碳转化是海洋碳循环研究的重要任务。本文综述了参与海洋木质素转化的功能微生物、木质素代谢机理以及微生物碳代谢活动与海洋碳汇过程的内在联系,为今后的研究提供参考。  相似文献   

12.
外源碳输入对土壤碳源可利用性的改变不仅直接影响着微生物参与陆地生态系统的碳循环过程,而且也制约着微生物对其它营养元素的需求。在大气氮沉降持续增加的全球变化背景下,部分地区已出现生态系统氮养分条件的显著变化甚至土壤中活性氮素的过量积累,进而带来微生物对碳源需求的增加。通过人为调控碳源的可利用性,改善微生物的碳限制状况,将对科学的增加陆地生态系统固碳能力具有极为重大的意义。综述了国内外有关外源碳输入对土壤碳排放、凋落物分解以及土壤碳库影响及其主要的微生物作用机制的相关研究结果,以期能够为未来氮沉降持续增加情景下,如何科学有效地提高生态系统的碳汇潜力提供一定的参考。  相似文献   

13.
铁作为浮游植物所必需的微量元素,限制了全球超过三分之一海域的初级生产力,尤其是在高营养盐、低叶绿素海域(high nutrient low chlorophyll,HNLC)。长期以来海洋铁施肥被认为是一项可以降低大气二氧化碳含量的地球工程策略。然而通过13次海洋人工铁施肥(artificial ocean iron fertilization,aOIF)实验发现,铁的额外添加对海洋深层碳输出量的促进作用要显著低于预期。本文简要地总结了碳在海洋和大气中的循环过程,回顾了人工铁施肥实验对生物碳泵和碳通量等的影响,分析了从海洋铁施肥到海洋碳汇关键生物地球化学过程的影响因素。综上分析发现,科学界对生物碳泵过程及其调控机制的认识仍十分浅薄,考虑到海洋铁施肥还会对海洋生态系统带来一定的负面作用,铁施肥能否作为降低大气中CO2的有效手段,以达到碳中和并缓解温室效应仍需进一步研究。  相似文献   

14.
孙军  魏玉秋 《生态学报》2018,38(14):5234-5243
硅元素是全球生地化循环的重要组成成分之一,对海洋生态系统中以浮游植物主导的初级生产力和硅碳循环具有重要的意义。普遍认为硅藻主导着全球海洋的硅循环,成为海洋硅循环和碳循环交互作用的重要桥梁。海洋单细胞聚球藻对海洋食物网和能量流具有关键启动和支撑作用,是全球碳循环中固碳过程的主要贡献者,近年又被发现其具有重要的硅质化作用,为我们提供了一个在海洋中(特别是寡营养海域),除硅藻之外,连接硅碳循环交互作用的新视角,对硅藻在全球海洋硅碳循环的绝对地位具有重要的挑战意义。面对聚球藻在大洋中如此巨大的生物量,甚至高于硅藻,有必要弄清楚其碳沉降机制以及准确的模拟其硅循环,然而关于其在海洋硅循环的研究极少,硅质化作用的吸收和储存机理以及环境调节机制也不清楚;另外,其对世界海洋硅碳循环的调节作用也未见报道。为此,通过前人对海洋单细胞聚球藻硅质化作用研究的基础上进行有针对性的探讨,可望对海洋单细胞聚球藻硅质化作用及其对硅碳循环的调控机制有一个基本的认识,为深入研究聚球藻在全球海洋硅循环中的作用提供基础。  相似文献   

15.
微生物生态学理论框架   总被引:12,自引:7,他引:5  
曹鹏  贺纪正 《生态学报》2015,35(22):7263-7273
微生物是生态系统的重要组成部分,直接或间接地参与所有的生态过程。微生物生态学是基于微生物群体的科学,利用微生物群体DNA/RNA等标志物,重点研究微生物群落构建、组成演变、多样性及其与环境的关系,在生态学理论的指导和反复模型拟合下由统计分析得出具有普遍意义的结论。其研究范围从基因尺度到全球尺度。分子生物学技术的发展,使人们可以直接从基因水平上考查其多样性,从而使得对微生物空间分布格局及其成因的深入研究成为可能。进而可以从方法学探讨微生物生物多样性、分布格局、影响机制及其对全球变化的响应等。在微生物生态学研究中,群落构建与演化、分布特征(含植物-微生物相互关系)、执行群体功能的机理(生物地球化学循环等)、对环境变化的响应与反馈机理是今后需要关注的重点领域。概述了微生物生态学的概念,并初步提出其理论框架,在对比宏观生态学基础理论和模型的基础上,分析微生物多样性的研究内容、研究方法和群落构建的理论机制,展望了今后研究的重点领域。  相似文献   

16.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

17.
大洋的最小含氧带(oxygen minimum zones,OMZs)具有特殊的水动力和氧含量特征,该区域是氮流失的主要场所,也是各类生化反应发生的重要区域。OMZs的存在会对浮游生物的丰度、多样性、分布模式及呼吸方式产生较大影响。大洋OMZs中存在广泛的反硝化、厌氧氨氧化、甲烷厌氧氧化和隐性厌氧硫氧化作用等都是海洋物质循环的关键环节。全球海洋OMZs的规模在人类活动和全球变暖等因素的影响下也呈现出逐渐扩大的趋势。低氧环境的变化可以通过微生物多样性和群落结构稳定性进行判断,因此了解该区域的多样性水平是十分必要的。现有研究虽然对海洋OMZs的生物地球化学循环、微生物多样性和生态效应有了一定的认识,但对该区域总体情况和微生物生态学研究现状的系统性综合论述还较少,对海洋低氧环境的微生物活性、群落结构稳定性和分子代谢过程的研究还有较大的探讨空间。本文介绍了海洋低氧环境的分布情况和生态环境效应,全面且详细地论述了OMZs内各物质循环过程和微生物多样性的研究现状,指出尚未很好解决的生态学问题。  相似文献   

18.
19.
农田作物同化碳输入与周转的生物地球化学过程   总被引:8,自引:0,他引:8  
作物同化碳在“大气-植物-土壤”系统中流通的生物地球化学过程,显著影响全球陆地生态系统碳循环过程。作物同化碳是土壤有机碳的重要来源,与根际环境及作物生长发育有密切联系,但由于其复杂性和多变性,作物生长期内同化碳在土壤中的分配、转化与稳定的机理尚不十分清楚。因此,综述了作物同化碳向土壤碳库输入及其对土壤有机碳库的贡献,在土壤碳库中的分配与转化特征,在土壤中流通的微生物机制以及同化碳在土壤-微生物系统分配、稳定的微观机制。探讨同化碳在地上部-根际-土壤系统中的分配及调节机制,土壤界面同化碳流动过程与土壤微生物多样性形成的关系;提出了在不同生态系统尺度上加强作物同化碳在土壤-作物系统中分配过程的定量研究对于明确陆地生态碳循环过程的重要意义;指出了研究作物同化碳向土壤碳库迁移、分配定量过程与机制的重要性,以及应用显微镜成像技术与同位素示踪技术相结合的纳米二次离子质谱技术、和微生物分子与群落生态相偶联的技术是未来研究作物同化碳生物地球化学特性的有效手段。  相似文献   

20.
Colin Averill 《Ecology letters》2014,17(10):1202-1210
Allocation trade‐offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade‐offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental‐scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号