首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Microbiological research》2014,169(4):262-278
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.  相似文献   

2.
Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinomycetes from terrestrial sources have been studied and screened since the 1950s, yielding many important anti-infective and anti-cancer drugs. However, frequent re-discovery of the same compounds in terrestrial actinomycetes have made them less attractive for screening programs in the recent years. At the same time, actinomycetes isolated from the marine environment currently receive considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. This review highlights achievements and challenges in the isolation of marine actinomycetes, some examples of bioactive metabolites identified by conventional screening, and presents new developments in the field of genome mining and heterologous expression of biosynthetic gene clusters leading to the discovery of novel compounds.  相似文献   

3.
Marine actinomycetes as a source of novel secondary metabolites   总被引:10,自引:4,他引:6  
A set of 600 actinomycetes strains which were isolated from marine sediments from various sites in the Pacific and Atlantic Oceans were screened for the production of bioactive secondary metabolites. Marine streptomycete strains were found to be producers of well known chemically diverse antibiotics isolated from terrestrial streptomycetes, as in the case of marine Micromonospora strains. New marine members of the rare genus Verrucosispora seem to be a promising source for novel bioactive secondary metabolites as shown in the case of the abyssomicin producing strain AB-18-032.  相似文献   

4.
Discovery of novel metabolites from marine actinomycetes   总被引:6,自引:0,他引:6  
Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats. These marine actinomycetes produce different types of new secondary metabolites. Many of these metabolites possess biological activities and have the potential to be developed as therapeutic agents. Marine actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.  相似文献   

5.
In the ever-expanding search for novel bioactive molecules and enzymes, marine actinomycetes have proven to be a productive source. While open reef sediment and sponge-associated actinomycetes have been extensively examined, their marine cave counterparts remain unevaluated. Anchialine cave systems in the Bahamas offered an ideal setting to evaluate the occurrence and variation within sediment-associated actinomycete communities. While in close geographical proximity to open reef environments, these systems provide a specialized environmental niche devoid of light and direct exposure to nutrient input. In the present study, selective isolation techniques and molecular methods were used to test the hypothesis that variable distribution of actinomycetes and secondary metabolite gene clusters occur between open reef and marine cave systems. The results indicated that differences exist within the culturable sediment-associated actinomycete communities between marine caves and open reef systems, with members of the genus Streptomyces dominating cultures from open reef sediments and a more diverse suite of actinomycetes isolated from marine cave sediment samples. Within the cave isolates, members of the proposed genus Solwaraspora were the most represented. Based on PKS- and NRPS-gene-targeted PCR amplification and sequencing, geographic variation in the occurrence of these biosynthetic pathways was also observed. These findings indicate that marine cave systems are a lucrative source in the search for novel secondary metabolite producers with biotechnological applications and that environmental and geographic factors likely affect the occurrence of these biosynthetic pathways.  相似文献   

6.
Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1–2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50–55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes.  相似文献   

7.
More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.  相似文献   

8.
Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites.  相似文献   

9.
Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists.  相似文献   

10.
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.  相似文献   

11.
New structurally diverse natural products are discovered when novel screening procedures are introduced or when high quality biological materials from new sources are examined in existing screens, hence it is important to foster these two aspects of novelty in drug discovery programmes. Amongst prokaryotes, actinomycetes, notably streptomycetes, remain a rich source of new natural products though it has become increasingly difficult to find such metabolites from common actinomycetes as screening ‘old friends’ leads to the costly rediscovery of known compounds. The bioprospecting strategy which is the subject of this review is based upon the premise that new secondary metabolites can be found by screening relatively small numbers of dereplicated, novel actinomycetes isolated from marine sediments. The success of the strategy is exemplified by the discovery of a range of novel bioactive compounds, notably atrop-abyssomicin C and proximicins A, B and C from Verrucosispora strains isolated from sediment samples taken from the Sea of Japan and the Raune Fjord, respectively, and the dermacozines derived from Dermacoccus strains isolated from the Challenger Deep of the Mariana Trench in the Pacific Ocean. The importance of current advances in prokaryotic systematics in work of this nature is stressed and a plea made that resources be sought to train, support and employ the next generation of actinobacterial systematists.  相似文献   

12.
【背景】珊瑚礁生态系统是海洋中一类极其重要的生态系统,健康珊瑚礁中丰富的共附生放线菌群体是珊瑚抵御各种致病菌的重要防线,因此,这类放线菌是寻找抗菌活性分子的重要资源,其药用潜力巨大。【目的】从西沙石珊瑚样品中分离共附生放线菌,并从中筛选具有良好抗菌活性的菌株。【方法】通过稀释涂布法分离珊瑚共附生放线菌,并根据16S rRNA基因序列构建系统发育树进行菌种鉴定;通过平板对峙法对放线菌进行抗菌活性筛选并确定目标菌株;将目标菌株涂布于不同氯化钠浓度的ISP2固体培养基上培养,测试其盐度耐受能力;通过平板对峙法对该菌株发酵产物的热稳定性和光稳定性进行测试;采用NanoPore和Illumina方法完成目标活性放线菌全基因组测序,并通过antiSMASH在线分析预测其次级代谢产物生物合成基因簇及其结构类型。【结果】从6份西沙石珊瑚样品中分离得到104株可培养放线菌,根据菌落形态和分离来源去重后对其中27株放线菌进行16S rRNA基因序列测序,通过序列比对和系统发育树分析将菌株初步鉴定为盐孢菌属(Salinispora)(25株)、链霉菌属(Streptomyces)(1株)和戈登菌属(Gord...  相似文献   

13.
海洋放线菌Marinactinospora thermotolerans的研究进展   总被引:1,自引:0,他引:1  
海洋放线菌以产生多种活性天然产物而著称,其中部分结构新颖的活性化合物具有发展成为新药的巨大潜力,引起国内外相关领域研究人员的极大关注。同时,也促进了我国海洋放线菌研究工作的全面展开。本文系统综述了海洋放线菌新属种Marinactinospora thermotolerans的分类鉴定、新颖的次级代谢产物的发现及其生物合成机制以及该菌株的全基因组生物信息学分析等方面的最新研究进展,以期能为其他海洋放线菌新属种的分类鉴定、活性次级代谢产物的发现和生物合成机制研究提供借鉴作用。  相似文献   

14.
Marine actinomycete diversity and natural product discovery   总被引:14,自引:5,他引:9  
Microbial natural products remain an important resource for drug discovery yet the microorganisms inhabiting the worlds oceans have largely been overlooked in this regard. The recent discovery of novel secondary metabolites from taxonomically unique populations of marine actinomycetes suggests that these bacteria add an important new dimension to microbial natural product research. Continued efforts to characterize marine actinomycete diversity and how adaptations to the marine environment affect secondary metabolite production will create a better understanding of the potential utility of these bacteria as a source of useful products for biotechnology.  相似文献   

15.
The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey’s manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O–H, C–H, C=O, and N–H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.  相似文献   

16.
The marine environment is a virtually untapped source of novel actinomycete diversity and its metabolites. Investigating the diversity of actinomycetes in other marine macroorganisms, like seaweeds and sponges, have resulted in isolation of novel bioactive metabolites. Actinomycetes diversity associated with corals and their produced metabolites have not yet been explored. Hence, in this study we attempted to characterize the culturable actinomycetes population associated with the coral Acropora digitifera. Actinomycetes were isolated from the mucus of the coral wherein the actinomycetes count was much higher when compared with the surrounding seawater and sediment. Actinobacteria-specific 16S rRNA gene primers were used for identifying the isolates at the molecular level in addition to biochemical tests. Amplified ribosomal DNA restriction analysis using three restriction enzymes revealed several polymorphic groups within the isolates. Sequencing and blast analysis of the isolates revealed that some isolates had only 96.7% similarity with its nearest match in GenBank indicating that they may be novel isolates at the species level. The isolated actinomycetes exhibited good antibacterial activity against various human pathogens. This study offers for the first time a prelude about the unexplored culturable actinomycetes diversity associated with a scleractinian coral and their bioactive capabilities.  相似文献   

17.
盐孢菌属(Salinispora)作为首个被报道的专性海洋放线菌,主要分布于热带和亚热带海洋沉积环境中,在海绵、海鞘中也有发现。与其他大多数放线菌一样,盐孢菌属的菌株可以产生大量具有抗细菌、抗病毒、抗肿瘤细胞活性、结构新颖的次级代谢产物且表现出物种特异性。全基因组序列分析显示,盐孢菌属菌株基因组中超过10%的基因序列与次级代谢产物合成相关,但绝大多数生物合成基因簇编码的产物未被发现,表明盐孢菌属还存在巨大的生物合成潜能,有待深入发掘。目前新的培养方法、测序技术及生物信息学、基因组发掘技术、合成生物学技术的发展对提升盐孢菌属菌株新型药物的生产潜力发挥重要作用。本文对盐孢菌属的物种多样性、系统分类与化合物发现等方面的研究进行了系统综述。  相似文献   

18.
【目的】为了探究南海海藻共附生放线菌资源的多样性及潜在的应用价值,对中国西沙群岛来源的海藻进行共附生放线菌的分离鉴定与抗菌活性筛选。【方法】利用稀释涂布平板法,采用2种不同分离培养基对不同采样位点的6种海藻进行放线菌分离;通过16S rRNA基因序列分析、构建系统发育树对分离的放线菌进行鉴定;用打孔法对无乳链球菌(Streptococcus agalactiae)等10种敏感细菌进行抗菌活性筛选;对筛选得到的目标活性菌株HZ014进行全基因组测序,通过AntiSMASH在线工具分析其次级代谢产物生物合成基因簇,预测其产生新型活性物质的潜力。【结果】从6种海藻中分离得到36株共附生放线菌,基于16S rRNA基因序列比对和系统发育分析,鉴定结果为链霉菌属(Streptomyces) 2株、红球菌属(Rhodococcus) 2株、诺卡氏菌属(Nocardia)3株、小单孢菌属(Micromonospora) 5株和盐孢菌属(Salinispora) 24株;抗菌活性筛选结果表明,36株共附生放线菌发酵粗提物对至少1种敏感细菌表现出一定的抑制作用,不同菌株发酵粗提物的抗菌活性存在明显差异,...  相似文献   

19.
With the recent advances in DNA sequencing technologies, it is now feasible to sequence multiple actinomycete genomes rapidly and inexpensively. An important observation that emerged from early Streptomyces genome sequencing projects was that each strain contains genes that encode 20 or more potential secondary metabolites, only a fraction of which are expressed during fermentation. More recently, this observation has been extended to many other actinomycetes with large genomes. The discovery of a wealth of orphan or cryptic secondary metabolite biosynthetic gene clusters has suggested that sequencing large numbers of actinomycete genomes may provide the starting materials for a productive new approach to discover novel secondary metabolites. The key issue for this approach to be successful is to find ways to turn on or turn up the expression of cryptic or poorly expressed pathways to provide material for structure elucidation and biological testing. In this review, I discuss several genetic approaches that are potentially applicable to many actinomycetes for this application.  相似文献   

20.
Microbial natural products, in particular, the ones produced by the members of the order Actinomycetales, will continue to represent an important route to the discovery of novel classes of bioactive compounds. As a result, the search for and discovery of lesser-known and/or novel actinomycetes is of significant interest to the industry due to a growing need for the development of new and potent therapeutic agents, mainly against drug resistant bacteria. Current advancements in genomics and metagenomics are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes. New discoveries, however, will only stem from a sound understanding and interpretation of knowledge derived from conventional studies conducted since the discovery of streptomycin, on the ecology, taxonomy, physiology and metabolism of actinomycetes, and from a combination of this knowledge with currently available and continuously advancing molecular tools. Such a powerful information platform will then inevitably reveal the whereabouts, taxonomical and chemical identities of previously undetected bioactive actinomycetes including novel species of streptomycetes as potential producers of novel drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号