首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-four compounds, including ten coumarins (110), thirteen flavonoids (1123), three triterpenoid, one lignanoid (24), seven triterpenes (2531) and three other compounds (3234), were isolated from the stems of Ficus tsiangii Merr. ex Corner (F. tsiangii). Their structures were identified as xanthyletin (1), coumarin (2), umbelliferone (3), isoangenomalin (4), dihydroxanthyletin (5), scopoletin (6), nodakenetin (7), 6,7-dihydroxy-coumarin (8), 4'-O-β- glucopyranosyl-3'-hydroxy-nodakenetin (9), 6-carboxy-umbelliferone (10), 5,7,4'-trimethoxy- 3'-hydroxy-aurone (11), apigenin (12), naringenin (13), genistein (14), luteolin (15), prunetin (16), chrysoeriol (17), 5,6,7,-trihydroxy-4'-methoxy-flavone (18), eriodictyol (19), isocarthamidin (20), 5,7,2',4'-tetrahydroxyflavone (21), taxifolin (22), dihydro-kaempferol (23), syringeresinol (24), taraxerol (25), taraxerone (26), lupeolacetate (27), 3-acetoxy-12- oleanene-11-ketone (28), 3-acetoxy-lup-12,20(29)-diene (29), oleanic acid (30), ursolic acid (31), 3,4,5-trimethoxy phenyl-1-O-glucopyranoside (32), 8'-hydroxyabscisic acid glucoside (33) and adenosine (34). Among them, all compounds except 3, 14, 17, 25, 26, 30, 33 were isolated from the plant for the first time, and compounds 1, 4, 5, 811, 16, 18, 20, 23, 24, 32, 34 were firstly reported from the genus Ficus. The chemotaxonomic significance of these compounds was summarized as follows.  相似文献   

2.
Phytochemical investigation of the aerial parts of Eremostachys moluccelloides Bunge led to the identification of a new diterpene, 2β,14-dihydroxy −11-formyl- 12-carboxy-13-des-isopropyl-13-hydroxymethyl-abieta-8,11,13- triene- 16(17)- lactone (1), along with the known compounds 12, 18-dicarboxy-14-hydroxy-13-des -isopropyl-13-hydroxymethyl- abieta-8,11,13-triene-16(17)-lactone (2), 5-hydroxy-3′,4′,7-trimethoxyflavone (3), 5-hydroxy-4’,7-dimethoxyflavone (4), luteolin-7-O-β-glucoside (5), verbascoside (6), luteolin 7-O-(6″-O-β-D-apiofuranosyl) -β-D-glucopyranoside (7), chlorogenic acid (8), echinacoside (9), apigenin-7-O-β-D-glucoside (10), p-coumaric acid (11), vanillic acid (12), apigenin-7-O-(6″-E-p-coumaroyl)-β-D-glucopyranoside (13), apigenin-7-O-(3″,6″-E-p-dicoumaroyl)-β-glucoside (14), lamalbide (15), 6β-hydroxy-7-epi-loganin (16), phloyoside II (17) The structures were elucidated on the basis of 1D and 2D NMR spectroscopy, UV, MS and by comparison with compounds previously reported in the literature. Compounds 14, 8, 9, 11, 12, 14 have not been reported previously from any species within the genus Eremostachys. Compounds 114, 17 were obtained from this species for the first time. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

3.
This work describes the isolation and characterization of twenty-nine compounds from the fruits of Rhus typhina L., including eleven flavonoids (1–11), eleven phenols (12–22), two pentacyclic triterpenes (23–24), two organic acids (25–26), one lumichrome (27), one courmarin (28) and one pyrimidine (29) on the basis of their spectroscopic data. Compounds apigenin (1), daidzein (4), orobol (5), 3′, 5, 5′, 7-tetrahydroxyflavanone (6), naringenin (7), butein (8), (-)-catechin (9), quercetin-3-O-α-L-(3″-O-galloyl)-rhamnoside (11), 2-hydroxybenzoic acid (13), 4-hydroxybenzaldehyde (14), vanillin (15), methyl 3,4-dihydroxybenzoate (16), 3,5-dihydroxybenzamide (18), tyrosol (19), caffeic acid (20), 3-(2,4,6-trihydroxyphenyl)-1-(4-hydroxyphenyl)-propan-1-one (21), phlorizin (22), friedelin (23), oleanolic acid (24), 4,4-dimethyl-heptanedioic acid (25), anthranilic acid (26), lumichrome (27), scoparone (28) and uracil (29) have not been recorded before in this plant. This is the first report on the occurrence of compounds 4–7, 9, 11, 13–14, 16, 18–21, 25–29 from the genus Rhus. Moreover, the chemotaxonomic significance of these isolated compounds was also summarized.  相似文献   

4.
Chemical study of Piper crocatum leaves has led to isolation of a new megastigmane glucoside isomer (18), along with 23 known compounds including fifteen phenolic compounds (115), two monoterpenes (16 and 17), three sesquiterpenes (1921), a phenolic amide glycoside (22), a neolignan (23), and a flavonoid C-glycoside (24). Structures of these compounds were identified via spectroscopic methods and compared with those reported in the literature. Seven compounds (7, 11, 13, 14, 17, 20, and 24) from the P. crocatum species and 17 others (16, 810, 12, 1516, 1819, and 2123) from the Piper genus and Piperaceae family were isolated and reported for the first time. Furthermore, this study discusses chemotaxonomic relations between P. crocatum and other Piper species.  相似文献   

5.
A phytochemical study of the whole plants of Chimaphila japonica Miq. led to the isolation of 23 compounds, including ten triterpenoids (110), six flavonoids (1116), two sterols (17 and 18), two quinonoids (19 and 20), one saccharide derivative (21), one phenolic glycoside (22), and one megastigmane glycoside (23). The structures of these isolated compounds were identified using NMR spectroscopy (1H and 13C) by comparison with previously reported data. All compounds, except 19 and 22, were reported from C. japonica for the first time. Among them, 16 compounds (14, 69, 12, 13, 15, 16, 18, 20, 21, and 23) were reported from genus Chimaphila for the first time, while compounds 12, 16, and 23 were isolated from the Ericaceae family for the first time. The chemotaxonomic significance of the isolates was also discussed.  相似文献   

6.
Chemical study of the whole plant of Leucas zeylanica (L.) B. Br. has led to isolation of a new norditerpenoid isomer (1), along with 29 known compounds, including one norditerpenoid (2), three flavonoid glycosides (35), six flavonoids (611), two phytosterols (1213), two phenylpropanoids (14, 19), two phthalate esters (15, 16), two phenolic compounds (17, 18), five terpenoids (2024), one aliphatic glycoside (25), one nucleobase (26), one amino acid (27), two alkaloids (2829), and one cytochalasin (30). The structures of these compounds were identified using NMR spectroscopic methods and comparing them with those previously reported. Twelve compounds (6, 15, 1720, 22, 23, 2629) were isolated for the first time from Leucas zeylanica and ten others (2, 4, 5, 7, 14, 16, 21, 24, 25, 30) from the Leucas genus. This study also discusses the chemotaxonomic relationships between Leucas zeylanica and other species of Leucas.  相似文献   

7.
Staphylococcus aureus is one of the most infectious agents among staphylococcal bacteria. Currently many strains of S. aureus have developed resistance against available antibiotics. Therefore, the treatment of infections caused by them is a major challenge. During current study, desogestrel (1), a contraceptive drug, was found to be a potent growth inhibitor of drug resistant strains of S. aureus. Therefore, in search of new and effective agents against multi-drug resistant S. aureus strains, whole-cell bio-catalytic conversion of desogestrel (1) by Cunninghamella blakesleeana ATCC 8688A at pH 7.0 and 25 °C was carried out, yielding three new metabolites, 13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-6β,15β,17β-triol (2), 13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-3β,6β,17β-triol (3), and 13-ethyl-11-methylene-18,19-dinor-17α-pregn-20-yn-3α,5α,6β,17β-tetraol (4), along with a known metabolite, 13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-6β,17β-dihydroxy-3-one (5). Among them, compounds 12 showed a potent activity against S. aureus EMRSA-17, S. aureus NCTC 13277 (MRSA-252), and S. aureus NCTC 13143, and clinically isolated Pakistani strain of S. aureus in an in vitro Microplate Alamar Blue Assay (MABA). Vancomycin was used as the standard drug in this assay. In addition, compound 1 also showed a significant activity against vancomycin-resistant S. aureus (VRSA) ATCC 700699. Compounds 15 were also evaluated against 3T3 normal cell line (mouse fibroblast) where they all were identified as non-cytotoxic. The present study thus provides new leads for the development of anti-bacterial drugs against MDR S. aureus.  相似文献   

8.
Phytochemical investigation of the roots of Sanguisorba officinalis L. led to the isolation of thirty-eight compounds, including seventeen triterpenoids (117), six monoterpenoid glycosides (1823), six flavonoids (2429), six phenols (3035), two glycosides (3637), and one lignan (38). The chemical structures of these compounds were elucidated on the basis of spectral data and by comparisons of spectroscopic data with reported values in the literature. Compounds 18, 29, and 3637 were the first to be reported in the family Rosaceae, compounds 10, 12, 15, 2728, and 38 were firstly identified from the genus Sanguisorba, and compound 11 was obtained from S. officinalis for the first time. The chemotaxonomic significance of these isolated compounds has also been discussed.  相似文献   

9.
A phytochemical study of chloroform-methanol and methanol extracts of Joannesia princeps Vell. Leaves led to the isolation of twenty eight compounds, including two α-ionones (2, 5), three glycosylated monoterpenes (1, 3, 4), eight phenolic compounds (6, 8, 9, 12, 14, 17, 18, 24), two gallotannins (10, 11), twelve flavonoids (7, 15, 16, 19, 2023, 2528), and one lignan (13). The structural characterization of the isolated compounds was performed by spectroscopic data and comparison with the literature. All compounds were isolated from this species and from the genus Joannesia for the first time. The chemotaxonomic importance of these metabolites is therefore summarized.  相似文献   

10.
Phytochemical investigations on the leaves of Valeriana officinalis L. led to the isolation of 18 compounds, including eight lignans (1–8), three sesquiterpenoids (9–11), five iridoids (12–16), and two aldehydes (17–18) The structure elucidation of isolated compounds was achieved on the basis of NMR and mass spectral data. Among them, three compounds (9–16, 18) are reported from V. officinalis for the first time and one compound (5) was isolated from the genus Valeriana for the first time. In addition, six compounds (2, 4, 6–8, 17) are isolated for the first time from Valerianaceae family. The chemotaxonomic significance of these isolated compounds has also been discussed.  相似文献   

11.
Phytochemical investigation of Lespedeza cuneata led to the isolation of seventeen compounds including three steroids (β-sitosterol 1, β-sitosterol-6′-linolenoyl-3-O-β-d-glucopyranoside 3, and β-sitosterol glucoside 13), nine flavonoids (quercetin 4, kaempferol 5, isovitexin 8, hirsutrin 9, nicotiflorin 10, vitexin 11, astragalin 12, trifolin 14, and isorhamnetin 17), two phenolics (benzyl-β-d-glucopyranoside 7 and homovanillyl alcohol 16), one carotenoid (loroxanthin 2), one lignin (7R,8S–dihydrodehydrodiconiferyl alcohol 15), and one hexose (pinitol 6) on the basis of their spectroscopic data. Among these compounds, 2, 3, 7, 15 and 16 were reported for the first time from the genus Lespedeza. The taxonomic significance of these isolated compounds was also summarized.  相似文献   

12.
Eighteen compounds, including four hemiterpene glycosides (14), three triterpenoid saponins (57), four triterpenes (811), five sterols (12-16) and two monoterpene glucosides (17 and 18), were isolated from the leaves of Ilex urceolatus C. B. Shang, K. S. Tang et D. Q. Du, which was identified as a new species belonging to the genus Ilex. Among them, compounds 1418 were firstly isolated from the genus Ilex, others were obtained from I. urceolatus for the first time. This work represented the initially phytochemical study on this plant. The isolated compounds have significant chemotaxonomic characteristics with the other species from this genus.  相似文献   

13.
Twenty-four compounds were obtained from the extract of the leaves of I. urceolatus, which were divided into saturated fatty alcohols (1 and 2), triterpenoids (38 and 1416), lignanoids (9, 20 and 22), coumarins (10 and 19), flavonoids (1113, 21, 23 and 24) and others (17 and 18). Among them, compounds 1, 2, 17 and 18 were firstly obtained from the genus Ilex, others were isolated from this species for the first time. The chemotaxonomic relationships between I. urceolatus and other species of genus Ilex were also discussed. As a result, the isolated compounds closely matched the ones obtained in other species of the genus.  相似文献   

14.
Phytochemical study of the whole plants of Sedum sarmentosum Bunge (Crassulaceae) led to the isolation of thirty-six constituents, including sixteen megastigmanes (116), seven sterols (1723), five lignans (2428), three triterpenoids (2931), three phenols (3234), one flavonoid (35), and one glycoside (36). The chemical structures of these metabolites were elucidated by NMR spectroscopy and compared with literature data previously reported. This is the first confirmation of the presence of eleven compounds (4, 15, 16, 18, 19, 22, 2426, 28, 32) isolated from the family Crassulaceae, one compound (3) from the genus Sedum, and two compounds (17 and 33) from S. sarmentosum. Furthermore, the chemotaxonomic significance of these ingredients from the whole plants of S. sarmentosum were discussed in detail.  相似文献   

15.
The chemical investigation of the roots of Vernonia guineensis Benth. (Asteraceae) resulted in the isolation of a new ceramide, named vernoguinamide (1), together with fifteen known compounds, including three anthraquinones, physion (2), erythroglaucin (3) and emodin (4), three triterpenoids, hop-17(21)-en-3β-yl acetate (5), lupeol (6) and betulinic acid (7), six steroids, vernoguinoside A (8), vernoguinoside (9), β-sitosterol 3-O-β-D-glucoside (10), stigmasterol 3-O-β-D-glucoside (11), stigmasterol (12) and β-sitosterol (13) and three fatty acid derivatives, tetracosanoic acid (14), tricosanic acid (15) and arachidic acid glycerol ester (16). The structure of the new compound as well as those of the known compounds were established by spectrometric analysis including HRESI-MS, 1D and 2D-NMR and by comparison with the previously reported data. Among these compounds, the anthraquinones 24 and the triterpene 5 were isolated for the first time from Vernonia genus and compounds 6, 7 and 1416 were extracted for the first time from the species. The isolated compounds were tested for their antibacterial activity and 3, 8 and 9 were the most active compounds against the tested bacteria. Furthermore, the chemophenetic relationships of the isolated compounds and their significance were also discussed.  相似文献   

16.
Phytochemical investigation of the leaves of Isatis tinctoria Linnaeus led to the isolation of thirty compounds, including thirteen indole alkaloids (1–13), seven quinazolinone alkaloids (14–20), two quinoline alkaloids (21–22), one quindoline alkaloid (23), one simple amide alkaloid (24) and six monoterpenes (25–30). According to spectroscopic data analysis and comparison with the previously reported literature, their structures were elucidated. Among them, six compounds (12, 13, 17, and 2224) have not been reported from the family Brassicaceae and eight compounds (3, 7, and 2530) were isolated from the genus Isatis for the first time. Furthermore, the chemotaxonomic significance of isolated compounds has also been elaborated.  相似文献   

17.
Twenty-five sesquiterpenoids including seventeen guaiane-type sesquiterpenoids and glucose glycosides (117), six eudesmane-type sesquiterpenoids (1823), and two germacrane-type sesquiterpenoids (24 and 25) were isolated from the aerial parts of Saussurea laniceps Hand.-Mazz. Their structures were elucidated by spectroscopic methods and comparison with previously reported spectral data. Among them, compounds (6 and 8) are new, and seven compounds (2, 9, 12, 1819, 2223) are reported for the first time from the genus Saussurea. This paper deals with the isolation, structural elucidation and chemotaxonomic significance of these sesquiterpenoids from S. laniceps.  相似文献   

18.
Two new spirostanol saponins (1) and (2), together with three known saponins (35), were isolated from the roots and rhizomes of Tupistra chinensis, and their structures were determined as (20S, 22R)-spirost-25(27)-en-1β, 3β, 4β, 5β-tetraol-5-O-β-d-glucopyranoside (1) and (20S, 22R)-spirost-25(27)-en-1β, 3β, 5β-triol-5-O-β-d-glucopyranoside (2), (20S, 22R)-spirost-25(27)-en-1β, 2β, 3β, 4β, 5β-pentaol-5-O-β-d-glucopyranoside (3), Δ25(27)-pentrogenin (4) and ranmogenin A (5) on the basis of physicochemical properties and spectral analysis. The isolated compounds were evaluated for their cytotoxic activities against A549 and H1299 tumor cell lines in vitro. Among them, compound 2 showed cytotoxicities against A549 cells (IC50 52.66 ± 3.12 μmol L−1) and H1299 cells (IC50 57.29 ± 2.51 μmol L−1), respectively.  相似文献   

19.
Microbial transformation of neoandrographolide (1), was performed by Mucor spinosus (AS 3.2450). Ten metabolites were obtained and identified as 14-deoxyandrographolide (2), 17,19-dihydroxy-8,13-ent-labdadien-16,15-olide (3), 3,14-dideoxyandrographolide (4), 7β-hydroxy-3,14-dideoxyandrographolide (5), 17,19-dihydroxy-7,13-ent-labdadien-16,15-olide (6), 8(17),13-ent-labdadien-16,15-olid-19-oic acid (7), 8α,17β-epoxy-3,14-dideoxyandrographolide (8), 8β,17,19-trihydroxy-ent-labd-13-en-16, 15-olide (9), phlogantholide-A (10), 19-[(β-d-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide (11) by spectroscopic and chemical means. Among them, products 3, 5, 6, 8 and 9 were characterized as new compounds. The inhibitory effects of compounds 111 on nitric oxide production in lipopolysaccharide-activated macrophages were evaluated and their preliminary structure–activity relationships (SAR) were discussed.  相似文献   

20.
Chemical investigation of the root of Rosa laevigata led to the isolation of sixteen phenolic compounds, including seven flavonoids (17), five condensed tannins (812), two stilbenes (13 and 14) and two benzoic acid derivatives (15 and 16). Their structures were identified as (+)-catechin (1), (+)-gallocatechin (2), (2R, 3S, 4S)-cis- leucocyanidin (3), (2R, 3S, 4S)-cis-leucofisetinidin (4), (2S, 3R, 4R)-cis- leucofisetinidin (5), dehydrodicatechin A (6), phloridzin (7), procyanidin B3 (8), fisetinidol-(4α, 8)-catechin (9), guibourtinidol- (4α, 8)-catechin (10), ent- isetinidol -(4α, 6)-catechin (11), fisetinidol-(4β, 8)-catechin (12), (Z)-3-methoxy-5-hydroxy- stilbene (13), (Z)-piceid (14), gallic acid (15) and 4-hydroxybenzoic acid- 4-O-β-D-glucopyranoside (16). Among them, compounds 3–7, 9–14, and 16 were isolated from R. laevigata for the first time, and compounds 3–7, 9, 10, 1214 and 16 were reported for the first time from the genus Rosa. The chemotaxonomic significance of these compounds was summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号