首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.  相似文献   

2.
Six peptides have been isolated and characterized from the dorsal glands of the tree frog Litoria genimaculata. One of these is the known hypotensive peptide caerulein; the others have been named maculatins. The amino acid sequences of the maculatin peptides have been determined using a combination of fast atom bombardment mass spectrometry and automated Edman sequencing. Four of the maculatin peptides show antibiotic activity, with maculatin 1.1 [GLFGVLAKVAAHVVPAIAEHF(NH2;)] showing the most pronounced activity, particularly against Gram-positive organisms. Maculatin 1.1 resembles the known caerin 1 antibiotic peptides, except that four of the central amino acid residues (of the caerin 1 system) are missing in maculatin 1.1. A comparison of the antibiotic activity of maculatin 1.1 with those of caerin 1.1 is reported. ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Aim Rapidly evolving pathogens may exert diversifying selection on genes involved in host immune defence including those encoding antimicrobial peptides (AMPs). Amphibian skin peptides are one important defence against chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). We examined the population‐level variation in this innate immune defence to understand its relationship with disease dynamics. Location Queensland, Australia. Methods We examined skin peptide defences in five geographically distinct populations of Australian green‐eyed treefrogs, Litoria genimaculata. Skin peptide samples were collected from 52 frogs from three upland populations that previously declined as chytridiomycosis emerged, but subsequently recovered, and from 34 frogs in two lowland populations that did not decline. Historical samples of skin peptides preceding Bd emergence were not available from any population. Results In general, lowland populations had more effective peptide defences than upland populations. Peptide profiles were similar among populations, although relative amounts of peptides expressed differed significantly among populations and were more variable in the uplands. Infected frogs in upland populations carried a significantly higher infection burden compared to lowland populations. The presence of effective AMPs in the skin of L. genimaculata does not eliminate infection; however, more effective peptide defences may limit infection intensity and the progression of disease. Main conclusions The population bottleneck in upland populations caused by chytridiomycosis emergence did not appear to produce responses to selection for more effective peptide defences against chytridiomycosis compared to lowland populations of L. genimaculata. This does not exclude the possibility that current peptide defences have adapted in response to disease emergence. A suggestive (P < 0.10) interaction between infection status and population indicates that in lowland populations, infected individuals tend to be those with lower relative intensities of AMPs, whereas in the upland populations, infected and uninfected individuals are similar. Thus, both the AMPs and the environment may act to mediate resistance to Bd infection.  相似文献   

4.
Summary Amphibian skin is a rich source of peptides that are specific to pathogens and act by disrupting bacterial membranes. Three antimicrobial peptides were isolated from the skin glands of Australian tree frogs,Litoria caerulea andLitoria genimaculata. NMR spectroscopy was used to observe changes induced by these peptides in the31P resonances of bacterial membranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics disrupted the membranes ofBacillus cereus andStaphylococcus epidermidis (Gram-positive), leading to an increase in the isotropic31P NMR signal. Caerin 4.1, a narrow-spectrum antibiotic, however, did not affect the31P spectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents on the membranes of live bacteria.  相似文献   

5.
The secretion of the skin glands of the ‘orange-thighed frog’ Litoria xanthomera contains seven peptides. One of these is the known hypotensive peptide caerulein. Two new peptides, caerin 1.6 [GLFSVLGAVAKHVLPHVVPVIAEKL(NH2)], and caerin 1.7 [GLFKVLGSVAKHLLPHVAPVIAEKL(NH2)] show antibacterial properties. Two other peptides lack the first two amino acid residues of caerins 1.6 and 1.7 and show no antibacterial activity. The identification of the peptides in Litoria xanthomera confirms that this species is related to Litoria caerula, Litoria gilleni and Litoria splendida but not as closely as those three species are related to each other. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

7.
Recently, we identified nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorrana ishikawae, to assess its innate immune system. In this study an additional antimicrobial peptide was initially isolated based on antimicrobial activity against Escherichia coli. The new antimicrobial peptide belonging to the palustrin-2 family was named palustrin-2ISb. It consists of 36 amino acid residues including 7 amino acids C-terminal to the cyclic heptapeptide Rana box domain. The peptide's primary structure suggests a close relationship with the Chinese odorous frog, Odorrana grahami. The cloned cDNA encoding the precursor protein contained a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and the C-terminal precursor antimicrobial peptide. It also contained 3 amino acid residues at the C-terminus not found in the mature peptide. Finally, the antimicrobial activities against four microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus and Candida albicans) were investigated using several synthetic peptides. A 29 amino acid truncated form of the peptide, lacking the 7 amino acids C-terminal to the Rana box, possessed greater antimicrobial activities than the native structure.  相似文献   

8.
Five healthy adult female first-generation hybrid tree frogs were produced by interspecific breeding of closely related tree frogs Litoria splendida and L. caerulea in a cage containing large numbers of males and females of both species. Phylogenetic analysis of mitochondrial DNA sequences established the female parent to be L. splendida. The peptide profile of the hybrid frogs included the neuropeptide caerulein, four antibiotics of the caerin 1 family and several neuronal nitric oxide synthase inhibitors of the caerin 1 and 2 classes of peptides. The skin secretions of the hybrids contained some peptides common to only one parent, some produced by both parental species, and four peptides expressed by the hybrids but not the parental species.  相似文献   

9.
One of the most urgent problems in conservation biology todayis the continuing loss of amphibian populations on a globalscale. Recent amphibian population declines in Australia, CentralAmerica, the western United States, Europe, and Africa havebeen linked to a pathogenic chytrid fungus, Batrachochytriumdendrobatidis, which infects the skin. The skin of amphibiansis critical for fluid balance, respiration, and transport ofessential ions; and the immune defense of the skin must be integratedwith these physiological responses. One of the natural defensesof the skin is production of antimicrobial peptides in granularglands. Discharge of the granular glands is initiated by stimulationof sympathetic nerves. To determine whether antimicrobial skinpeptides play a role in protection from invasive pathogens,purified antimicrobial peptides and natural peptide mixturesrecovered from the skin secretions of a number of species havebeen assayed for growth inhibition of the chytrid fungus. Thegeneral findings are that most species tested have one or moreantimicrobial peptides with potent activity against the chytridfungus, and natural mixtures of peptides are also effectiveinhibitors of chytrid growth. This supports the hypothesis thatantimicrobial peptides produced in the skin are an importantdefense against skin pathogens and may affect survival of populations.We also report on initial studies of peptide depletion usingnorepinephrine and the kinetics of peptide recovery followinginduction. Approximately 80 nmoles/g of norepinephrine is requiredto deplete peptides, and peptide stores are not fully recoveredat three weeks following this treatment. Because many specieshave defensive peptides and yet suffer chytrid-associated populationdeclines, it is likely that other factors (temperature, conditionsof hydration, "stress," or pesticides) may alter normal defensesand allow for uncontrolled infection.  相似文献   

10.
11.
Host defense peptides of 35 species of Australian frogs from the hylids Cyclorana and Litoria, and the myobatrachids Crinia, Limnodynastes and Uperoleia have been identified. The biological activities of the majority of these peptides have been determined and include hormones, neuropeptides, opioids, immunomodulators, membrane active peptides [including antimicrobial, anticancer, antiviral (enveloped viruses like HIV and Herpes) and antifungal peptides], neuronal nitric oxide synthase inhibitors, pheromones and individual peptides with other specific activities. The host defense peptide skin profile can be diagnostic at both the species and higher taxonomic levels; for example, species of Crinia, Litoria and Uperoleia each produce quite different types of peptides. Species of Cyclorana and Limnodynastes are more difficult to characterize by skin peptides alone: species of both genera produce similar peptides with no apparent activity. The skin peptide profiles of frogs from the genera Crinia, Litoria and Uperoleia may be used together with morphological and cognate methods, to differentiate between sub-species and even different population clusters of the same species. Nucleotide sequencing of cDNAs of precursors (pre-pro peptides) of bioactive peptides from the skin glands of various species of the genus Litoria show that the majority of these peptides originated from a single ancestor gene before the break away of Australia from Gondwana. The exceptions are the caerulein neuropeptides {e.g. caerulein [pEQDY(SO3H)TGWMDF(NH2)]} which have a different origin to that of other Litoria peptides. Disulfide containing peptides from skin glands of species of Crinia show a different evolutionary route to peptides from species of Litoria.  相似文献   

12.
《Biophysical journal》2022,121(8):1512-1524
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.  相似文献   

13.
Hylarana is a well established frog genus coming under the family Ranidae. An increasing number of antimicrobial peptides have been isolated and characterized from the skin of frogs of this genus. This review covers the antimicrobial peptides reported so far from the frogs of Hylarana genus and to propose a consistent system of nomenclature for amphibian skin peptides. Multiple sequence alignment of the skin peptides from Hylarana genus has grouped them into six peptide families, and three bioactive peptides. Existing nomenclature of amphibian antimicrobial peptides is species centered with no implication to the genus which can lead to disparities, when frogs with same species name belonging to different genus have to be named. As per the proposed system the peptide should have the parent peptide name (e.g. Brevinin-1) followed by two uppercase letter of the genus, if two genera begin with the same letter–first letter should be the same followed by an appropriate second letter (e.g. HU for Huia and HM for Humenerana). This is succeeded by species name in lower case-orthologous peptides from different species may be characterized by the initial letter of that species, when two species begin with the same initial letter, second letter should be used appropriately (e.g. HLat for Hylarana aurata and HLan for Hylarana aurantiaca). Paralogs belonging to the same peptide family are assigned by numbers.  相似文献   

14.
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

15.
We recently reported the primary structures, antimicrobial activities and cDNA precursors of nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorranaishikawae. Their cDNA clones revealed a highly conserved approximately 60 bp region upstream of the start codon. This conserved region was used in the “shotgun” cDNA cloning method to reveal additional cDNAs encoding novel antimicrobial peptides of O.ishikawae. After sequencing 344 clones, we identified novel 13 cDNAs encoding dermal peptides in addition to the previously identified nine antimicrobial peptides. These 13 unique cDNAs encoded precursor proteins each containing a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg/Lys processing site and a dermal peptide at the C-terminus. The dermal peptides were members of the palustrin-2 (two peptides; termed palustrin-2ISc and palustrin-2ISd), nigrocin-2 (one peptide; nigrocin-2ISc), brevinin-1 (one peptide; brevinin-1ISa), odorranain-M (one peptide; odorranain-MISa) and entirely novel peptides (eight peptides; ishikawain-1-8). Although palustrin-2ISd and odorranain-MISa had few antimicrobial activities, palustrin-2ISc and nigrocin-2ISc possessed a broad-spectrum of growth inhibition against bacteria. Brevinin-1ISa had the most potent antimicrobial activities against the Gram-positive bacteria and the fungus but not the Gram-negative bacterium, Escherichiacoli. However, eight novel peptides showed no growth inhibition against these microorganisms.  相似文献   

16.
In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC–MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.  相似文献   

17.
MtDNA sequencing was used to investigate the genetic population structure of Litoria pearsoniana, a wet forest-restricted hylid frog, endemic to southeast Queensland and northeast New South Wales, Australia. L. pearsoniana is regarded as endangered under Queensland legislation. Significant genetic divergence among populations of frogs from different rainforest isolates was identified, but the lack of reciprocal monophyly among adjacent isolates suggests this is the result of a relatively recent disruption to gene flow. A paired catchment study within a single rainforest isolate, the Conondale Range, revealed no substantial genetic structuring, indicating the occurrence of terrestrial dispersal among nearby streams either in the recent past or currently. Two major reciprocally monophyletic clades of mtDNA alleles were identified. These corresponded to two geographical regions separated by the Brisbane River valley; one consisting of the Conondale and D’Aguilar Ranges, and the other of the southern isolates in the Main, Border and Gibraltar Ranges. Sequence divergence between the two regions was more consistent with a late Miocene or Pliocene rather than late Pleistocene separation, and is similar to that found among phylogeographic divisions of rainforest reptiles and amphibians in north Queensland rainforests. The molecular evidence for long-term separation of these two regions is corroborated by the pattern of species turnover in the distributions of species of rainforest-restricted amphibians and reptiles. Bioclimatic modelling suggests that appropriate conditions for L. pearsoniana would have been restricted to isolated refuges in each phylogeographic division under cooler and drier climates, such as predicted for the last glacial maximum. Currently isolated montane areas may have been connected transiently during the past 2000 years. Identification of long-term zoogeographic divisions among southeast Queensland rainforest herpetofauna has important implications for conservation and management. Conservation management of L. pearsoniana should be applied at the scale of major rainforest isolates and the conservation status of the species should be assessed independently north and south of the historical division.  相似文献   

18.
Short cationic antimicrobial peptides (AMPs) are believed to act either by inducing transmembrane pores or disrupting membranes in a detergent-like manner. For example, the antimicrobial peptides aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1, despite being closely related, appear to act by fundamentally different mechanisms depending on their length. Using molecular dynamics simulations, the structural properties of these four peptides have been examined in solution as well as in a variety of membrane environments. It is shown that each of the peptides has a strong preference for binding to regions of high membrane curvature and that the structure of the peptides is dependent on the degree of local curvature. This suggests that the shorter peptides aurein 1.2 and citropin 1.1 act via a detergent-like mechanism because they can induce high local, but not long-range curvature, whereas the longer peptides maculatin 1.1 and caerin 1.1 require longer range curvature to fold and thus bind to and stabilize transmembrane pores.  相似文献   

19.
HP (2-20) (AKKVFKRLEKLFSKIQNDK-NH2) is an antibacterial 19-mer peptide derived from the N-terminal region of Helicobacter pylori ribosomal protein L1 (RPL1). Several truncated peptides were synthesized to investigate the effects of the N- or C-terminal regions of HP (2-20) on antimicrobial activity. The antimicrobial activity of the peptides was measured by their growth inhibitory effect upon Pseudomonas aeruginosa, Salmonella typhimurium, Saccharomyces cerevisae, Trichosporon beigelii and Candida albicans. Antimicrobial activity required a full length N-terminus. None of the peptides exhibited hemolytic activity against human erythrocyte cells. The membrane-disrupting activity of these peptides, using liposomes and 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe, confirmed that the full N-terminal region of HP (2-20) is a prerequisite for antibiotic activity and that this region may facilitate penetration of the cell membrane. Circular dichroism indicated that the -helical structure of the peptides important for antimicrobial activity.  相似文献   

20.
The amphibian disease chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, has been implicated in mass mortalities, population declines and extinctions of amphibians around the world. In almost all cases, amphibian species that have disappeared or declined due to chytridiomycosis coexist with non-declining species. One reason why some species decline from chytridiomycosis and others do not may be interspecific differences in behaviour. Host behaviour could either facilitate or hinder pathogen transmission, and transmission rates in the field are likely to vary among species according the frequency of factors such as physical contact between frogs, contact with infected water and contact with environmental substrates containing B. dendrobatidis. We tracked 117 frogs (28 Litoria nannotis, 27 L. genimaculata and 62 L. lesueuri) at 5 sites where B. dendrobatidis is endemic in the rainforest of tropical northern Queensland and recorded the frequency of frog-to-frog contact and the frequency of contact with stream water and environmental substrates. Frequency of contact with other frogs and with water were highest in L. nannotis, intermediate in L. genimaculata and lowest in L. lesueueri. Environmental substrate use also differed among species. These species-specific opportunities for disease transmission were correlated with conservation status: L. nannotis is the species most susceptible to chytridiomycosis-related declines and L. lesueuri is the least susceptible. Interspecific variation in transmission probability may, therefore, play a large role in determining why chytridiomycosis drives some populations to extinction and not others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号