首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We proposed a plasmonic nanosensor with an ultra-high sensitivity based on groove and ring resonator. Simulation results show that these sharp Fano profiles originate from the interference between the groove and ring resonator. The profile can be easily tuned by changing the parameters of the structure. Moreover, we introduce a new way to achieve multiple Fano resonances through independent processes by adding a side-coupled stub cavity, and the Fano resonances can be tuned independently. These characteristics offer flexibility in the design of the devices. This nanosensor yields an ultra-high sensitivity of ~2000 nm/RIU, which is rarely seen in the previous report. Our structures may have potential applications for nanosensors, slow light, and nonlinear devices in highly integrated circuits.  相似文献   

2.
In this paper, two Fano resonances are achieved in the proposed plasmonic system. Theoretical analysis and simulation results show that two discrete states coupled with a continua lead to these Fano resonances. The discrete states are provided by the side-coupled square cavity, and a baffle plate placed in metal-dielectric-metal waveguide is used to produce a continuous transmission spectrum. The resonant wavelengths and the linewidth of these Fano resonances can be easily tuned by adjusting the parameters of system. This system exhibits high sensitivities as high as 850 and 1120 nm/RIU corresponding to two Fano resonances, and the figure of merit can reach to 1.7 × 105 by optimizing the system. By introducing another square cavity, four Fano resonances are obtained which originate from four discrete states coupled with continua, and they can be tuned independently. The flexible multi-Fano resonances system has significant application bio-nanosensor, nonlinear, and slow light devices.  相似文献   

3.
Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1?×?103 nm/RIU and its figure of merit is as high as 2?×?105 at λ?=?980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.  相似文献   

4.
This paper proposes a compact plasmonic structure that is composed of a metal-insulator-metal (MIM) waveguide coupled with a groove and stub resonators, and then investigates it by utilizing the finite element method (FEM). Simulation results show that the interaction between the local discrete state caused by the stub resonator and the continuous spectrum caused by the groove resonator gives rise to one of the two Fano resonances, while the generation of the other resonance relies only on the groove. Meanwhile, the asymmetrical linear shape and the resonant wavelength can be easily tuned by changing the parameters of the structure. By adding stubs on the groove, we excited multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of 2000 nm/RIU and a figure of merit of about 3.04?×?103, which can find extensive applications for nanosensors.  相似文献   

5.
A high performance plasmonic sensor based on a metal-insulator-metal (MIM) waveguide coupled with a double-cavity structure consisting of a side-coupled rectangular cavity and a disk cavity is proposed. The transmission characteristics of the rectangular cavity and disk cavity are analyzed theoretically and the improvements of performance for the double-cavity structure compared with a single cavity are studied. The influence of structural parameters on the transmission spectra and sensing performance are investigated in detail. A sensitivity of 1136 nm/RIU with a high figure of merit of 51,275 can be achieved at the resonant wavelength of 1148.5 nm. Due to the high performance and easy fabrication, the proposed structure may be applied in integrated optical circuits and on-chip nanosensors.  相似文献   

6.
Liu  Qiong  Liu  Mingwei  Zhan  Shiping  Wu  Lingxi  Xie  Suxia  Chen  Zhaohui  Zhang  Yichen 《Plasmonics (Norwell, Mass.)》2019,14(4):1005-1011

In this paper, a graphene strip is introduced into a metal-insulator-metal (MIM)-integrated square cavity hybrid structure; the transmission spectra are theoretically investigated by the finite different time domain (FDTD) methods. An asymmetric Fano resonance dip that has high figure of merit (FOM) value appears in the transmission band. According to the multimode interference coupled mode theory (MICMT) analytical method, the Fano resonance originates from the coherent coupling between TM10 cavity magnetic mode and graphene plasmonic resonance electric mode. The center wavelength, full width at half maximum (FWHM), and FOM value of the Fano resonance can be tuned dynamically by altering the Fermi level of the graphene. Through breaking the symmetry of the hybrid structure or introducing double graphene strips with different Fermi level into hybrid structure, double Fano resonance are realized. This study can provide some theoretical basis and design reference for designing ultrahigh sensitivity plasmonic sensor.

  相似文献   

7.
Zheng  Mingfei  Li  Hongjian  Xu  Hui  Zhao  Mingzhuo  Xiong  Cuixiu  Zhang  Baihui 《Plasmonics (Norwell, Mass.)》2019,14(2):397-405
Plasmonics - We report plasmonic waveguide side-coupled with sectorial-ring cavity resonator which is called as side-coupled sectorial-ring cavity waveguide, and study the transmission performance...  相似文献   

8.
Wang  Jicheng  Niu  Yuying  Liu  Dongdong  Hu  Zheng-Da  Sang  Tian  Gao  Shumei 《Plasmonics (Norwell, Mass.)》2018,13(2):609-616

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

  相似文献   

9.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

10.
A simple T-shaped plasmonic nanostructure composed of two perpendicular coupled nanorods is proposed to produce strong Fano resonances. By the near-field coupling between the “bright” dipole and “dark” quadrupole plasmons of the nanorods, a deep Fano dip is formed in the extinction spectrum, which can be well fitted by the Fano interference model. The effects of the geometry parameters including nanorod length, coupling gap size, and coupling location to the Fano resonances are analyzed in detail, and a very high refractive index sensitivity is achieved by the Fano resonance. Also by adjusting the incident polarization direction, double Fano resonances can be formed by the interferences of the dipole, quadrupole, and hexapole plasmons. The proposed nanorod dimer structure is agile, and a trimer which supports double Fano resonances can be easily formed by introducing a third perpendicular coupled nanorod. The proposed T-shaped nanorod dimer structure may have applications in the fields of biological sensing and plasmon-induced transparency.  相似文献   

11.
Binfeng  Yun  Ruohu  Zhang  Guohua  Hu  Yiping  Cui 《Plasmonics (Norwell, Mass.)》2016,11(4):1157-1162
Plasmonics - A plasmonic waveguide system composed of metal-insulator-metal (MIM) stub coupled with circular cavity resonator was proposed to produce ultra sharp Fano resonances, which resulted...  相似文献   

12.

In the paper, resonances of different waveguide structures with various vertical indirect coupled cavities were investigated by FDTD (finite difference-time domain). In the silicon cavity, Fano resonance could be observed at about 1430 nm. The coupling distance for the gold cavity/air cavity had less effect on the transmittance of the main waveguide but had a great influence on the transmission for water cavity in the visible region, which showed that water cavity could adjust resonance of waveguide structures. In addition, with the increment of refractive index n, the resonance peak at about 850 nm moved to the long wavelength (redshift). Dispersion rate about 2 × 10–3/nm indicated that the transparent dielectric selectively absorbed the surface plasmon polariton wave and the sensitivity of the waveguide structure designed in this paper has high stability for the refractive index of the main waveguide cavity. Obvious Fano resonance could be observed with the increase of refractive index for silicon cavity. Among the four dielectrics, silicon and water are suitable for studying Fano resonance and filter dielectrics.

  相似文献   

13.
Chen  Ying  Zhang  Min  Cao  Jinggang  Xiao  Chunyan  Zhu  Qiguang 《Plasmonics (Norwell, Mass.)》2021,16(5):1719-1728

A structure of double-baffle metal-dielectric-metal (MDM) waveguide coupled cascaded square cavity is designed based on the transmission characteristics of the surface plasmon polaritons. Combined with coupled mode theory (CMT), the mechanism of multiple Fano resonances generated by this structure is analyzed qualitatively. The wide-band spectrum mode generated by the F-P resonant cavity and the four narrow-band spectrum modes produced by the cascaded square resonant cavities interfere with each other. Moreover, an new scheme of introducing a semiconductor material InGaAsP into this structure is designed for improving the transmittance of the Fano peaks. Analyze the influence of refractive indexes of the test objects on sensing performance by finite element method (FEM) quantitatively, which shows the improved structure can achieve the independent tuning of multiple Fano resonances. Combining with 96-well microplate technology, the structure can achieve the detection of multiple different samples with high-performance simultaneously. It is believed that the proposed structure has a strong reference significance for the design of optical micro-nanostructures for high throughput detection.

  相似文献   

14.
Metallic nanostructures that support multipolar Fano resonances have drawn much attention in recent years. Such structures are applicable especially to enhanced nonlinear optics, where two resonance wavelengths need to be modulated simultaneously. However, how to tune multipolar Fano resonances independently remains a challenge. In the paper, the plasmonic nanostructure consisting of two ring/disk cavities (RDCs) is investigated using the finite element method. The dark multipolar modes of each RDC are excited, and sharp multipolar Fano resonances are induced. The multipolar modes supported by different RDCs can be tuned independently by changing the sizes. The line-widths of such Fano resonances nearly keep below 0.05 eV, and the contrast ratio (CR) of the two quadrupolar Fano dips mostly maintain above 50 %. In addition, the exciting bonding modes of different RDCs make the selective storage of resonance energy available. Such plasmonic nanostructures may find applications in enhanced nonlinear optics or nano-optical elements.  相似文献   

15.
We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (~28 mA/W) and spectral selectivity (~510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (~510 nm) from the plasmonic Ag peak (~380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.  相似文献   

16.
In this paper, we proposed plasmonic dimers consisted of two evanescent field coupled graphene monolayer nanodisks. The electromagnetic properties including the split modes with non-degenerate wavelengths, enhancement of the quality factors (Q factors) and mode areas, and the coupling between the fundamental and the first-order whispering-gallery modes are numerically predicted and analyzed systematically. Compared with the single graphene nanodisk, the Q factor of TM4,1 reaches 356 in a dimer with a radius of 5 nm of each nanodisk and an inter-disk gap of 0.4 nm, where the corresponding mode area is as small as 6.88?×?10‐?5(λ 0)2. In addition, the enhanced performances of size-mismatched coupled graphene plasmonic dimers are investigated. This graphene monolayer plasmonic dimer could be one of the fundamental components in the future ultra-high density plasmonic circuit technique, on-chip plasmonic interconnect, and transformation plasmonics. It also could be used as the test-beds for added explorations of cavity quantum electrodynamic experiments.  相似文献   

17.
In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.  相似文献   

18.
All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.  相似文献   

19.
Plasmonic optical trapping is widely applied in the field of bioscience, microfluidics, and quantum optics. It can play a vital role to extend optical manipulation tools from micrometer to nanometer scale level. Currently, it is a challenge to obtain the highly stable optical trapping with low power and less damage. In this paper, we propose Fano resonance-assisted self-induced back-action (FASIBA) method, through which a single 40-nm gold particle can be trapped in hole-slit nano-aperture milled on metallic film. It is used to achieve ultra-accurate positioning of nanoparticle, metallic nanostructures at wide infrared wavelength range, quite effectively and evidently. The stable plasmonic trapping is achieved by tuning the transmission wavelengths and modifications of nanoslit, indicating that the depth of potential well can be increased from minus 8KT to 12KT, with the input power of 109 W/m2. This can be attributed to great modifications in Fano resonance transmissions according to self-induced back-action (SIBA) theory. The results are basically helpful to facilitate the trapping with lower power and less damage to the objects, which enables new scenario for the treatment of undesirable spread of a single nanoscale creature, such as virus.  相似文献   

20.
Dynamically tunable multichannel filter based on plasmon-induced transparencies (PITs) is proposed in a plasmonic waveguide side-coupled to slot and rectangle resonators system at optical communication range. The slot and rectangle resonators in this system can be regarded as radiative or dark resonators as same as the radiative or dark elements in the metamaterial structure with the help of the evanescent coupling. The multiple PIT responses which can enable the realization of nanoscale filter with four channels are originated from the direct near-field coupling and indirect phase couple through a plasmonic waveguide simultaneously. Moreover, the magnitudes and bandwidths of the filter can be efficiently tuned by controlling of the geometric parameters such as the coupling distances and the pump light-induced refractive index change of the Kerr material which is embedded into the metal-dielectric-metal waveguide between the radiative resonators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号