首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, two Fano resonances are achieved in the proposed plasmonic system. Theoretical analysis and simulation results show that two discrete states coupled with a continua lead to these Fano resonances. The discrete states are provided by the side-coupled square cavity, and a baffle plate placed in metal-dielectric-metal waveguide is used to produce a continuous transmission spectrum. The resonant wavelengths and the linewidth of these Fano resonances can be easily tuned by adjusting the parameters of system. This system exhibits high sensitivities as high as 850 and 1120 nm/RIU corresponding to two Fano resonances, and the figure of merit can reach to 1.7 × 105 by optimizing the system. By introducing another square cavity, four Fano resonances are obtained which originate from four discrete states coupled with continua, and they can be tuned independently. The flexible multi-Fano resonances system has significant application bio-nanosensor, nonlinear, and slow light devices.  相似文献   

2.
In this paper, we present a peculiar metal-dielectric-metal (MDM) nanosandwich grating structure that can achieve extraordinary optical transmission performances at normal incidence in the ultraviolet-visible-near infrared (UV-VIS-NIR) regions. The proposed structure shows three obvious spectrum characteristics: it can obtain high transmittance up to 80 % in NUV region and efficiently blocking visible wavelengths for transverse-magnetic (TM) polarized incidence; a broadband NIR polarizer can be inspired in the wavelength range from 950 to 1400 nm; more surprisingly, these performances do not deteriorated until 30° tilting angle. Compared to other grating structures with single metal overlayer, it shows wider band-stop characteristics and higher broadband transmission transmittance and extinction ratio (ER) in the investigated wavebands. We analyze the underlying physical mechanism by using numerical simulation, which is primarily attributed to metal ultraviolet transparency, surface plasmon polariton (SPP) at metal/dielectric interface, Fabry–Perot (FP)-like cavity mode within this dielectric grating, and optical magnetic resonance especially in the dielectric interlayer of the MDM sandwiched structure. This structure is very important for developing high-performance subwavelength multifunctional integrated optical devices.  相似文献   

3.
A model of a multi-band-stop filter is proposed for single-photon transport, using a one-dimensional waveguide side coupled with a series of optical cavities. Its transmission behavior is theoretically studied by a real-space model Hamiltonian and is found to depend on cavity mode frequencies, cavity relative phases, as well as cavity number and the coupling strength between the waveguide and the optical cavities. With proper cavity-mode frequencies and relative phases, the proposed model shows multi-band-stop regions and a rectangular transmission spectrum. Based on these phenomena, optical filters with more than one band-stop regions are simulated with gold material in the THz and communication band.  相似文献   

4.
We report a 3D plasmonic nanostructure having an extraordinary optical transmission due to localized surface plasmon (LSP) coupling between nanoholes and nanodisks. The nanostructure contains a free-standing gold nanohole array (NHA) film above a cavity and an array of nanodisks at the bottom of the cavity that is aligned with the NHA. For the device, the LSP-mediated resonance position was dependent on the hole and nanodisk diameter as well as the separation distance. Also, the effect of LSP coupling between each hole and corresponding nanodisk became negligible for cavities deeper than 200 nm as observed as a disappearance of the LSP resonance. The greatest LSP resonance transmission and the highest electric field intensity were observed for the structure with the shallowest cavity. In addition, the structure had high surface plasmon resonance sensitivity and may have potential for surface-enhanced Raman spectroscopy and optical trapping applications.  相似文献   

5.
A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.  相似文献   

6.
In this paper, we design and simulate a two-dimensional photonic crystal MZI for pressure sensing with a high sensitivity. The sensor is formed by silicon rods of a rectangular lattice distributed in air wafer; when the pressure is applied in an area of rods situated between the Y branch waveguides of MZI, the sensitivity achieved a very high value which is 22.3667 nm/GPa compared to that obtained when the pressure was applied over the entire surface of the sensor structure in which the sensitivity reached 6.36 nm/GPa.  相似文献   

7.
We have investigated the structure of complexes formed between a series of poly(A)n (n = 30 to 480) and HD40 (helix-destabilizing protein, molecular weight of 40,000), the major protein component of 30 S heterogeneous nuclear ribonucleoprotein particles (hnRNP) from the brine shrimp Artemia salina. Protein HD40 is similar to corresponding hnRNP proteins from higher eukaryotes and the complexes it forms with single-stranded nucleic acids are strikingly similar to the native "beads-on-a-string" structure of hnRNP. Using analytical ultracentrifugation and electron microscopy we find: (1) complexes formed between HD40 and long ribohomopolymers also have a beads-on-a-string structure, showing that the ability to form this structure is an inherent property of HD40, and is not dependent on any structural features of natural RNA; (2) complexes between HD40 and poly(A)160 form disks that are about 3 nm high by 18 nm in diameter and contain 20 HD40 molecules; (3) complexes of HD40 with poly(A)n with fewer than 160 nucleotides form sectors of a disk: 40 nucleotides give rise to a quarter of a disk, 80 nucleotides, half a disk, etc. The molecular weights increase with the size of poly(A)n at the rate of 5300 per nucleotide, a stoichiometry of eight nucleotides per HD40; (4) as the size of the poly(A)n increases beyond 160 nucleotides, the additional nucleoprotein elements may either initiate the formation of a second disk adjacent to the first or stack on top of the first disk to form a 6 nm high helix with a diameter of 18 nm. Based on these results, we propose that the existence of lateral protein-protein interactions that produce the basic 3 nm X 18 nm disk, combined with the marginal stability of the helix result in (a) interruptions of the helix that give rise to the beads-on-a-string appearance of the complexes, and (b) inherent heterogeneity of individual "beads" which may contain one or more turns of the helix. From measurements of HD40 complexes with coliphage MS2 RNA, phi X174 viral DNA as well as with the homopolymers, a bead is estimated to contain an average of approximately 300 nucleotides; approximately 1 X 8 turns of the helix.  相似文献   

8.
We report a simple 1D grating device fabrication on ~50 nm gold (Au) film deposited on glass, which is employed as a high performance refractive index (RI) sensor by exploiting the surface plasmon polaritons (SPP) excited by the grating device along the Au/analyte interface. A finite element analysis (FEA) method is employed to maximize the sensitivity of the sensor for a fixed period and thickness of a gold film and its close correspondence with experiment has given the insight for high sensitivity and enhanced transmission. Significantly, in the context of economic design and performance, it is shown that an optimally designed and fabricated 1D grating can be as sensitive as 524 nm/RIU (linearity RI?=?1.33303 to 1.47399), which is remarkably higher than existing reports operating in a similar wavelength region.  相似文献   

9.
Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1?×?103 nm/RIU and its figure of merit is as high as 2?×?105 at λ?=?980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.  相似文献   

10.
We propose a compact plasmonic structure comprising a metal-dielectric-metal (MDM) waveguide coupled with a side cavity and groove resonators. The proposed system is investigated by the finite element method. Simulation results show that the side-coupled cavity supports a local discrete state and the groove provides a continuous spectrum, the interaction between them, gives rise to the Fano resonance. The asymmetrical line shape and the resonant wavelength can be easily tuned by changing the geometrical parameters of the structure. Moreover, we can extend this plasmonic structure by the double side-coupled cavities to gain the multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of ~1900 nm/RIU and a figure of merit of about ~3.8?×?104, which can find wide applications for nanosensors.  相似文献   

11.
Hu  Nan  Zhang  Guanmao  An  Houlin  Shi  Yue  Gu  Mengqi 《Plasmonics (Norwell, Mass.)》2017,12(5):1457-1462
Plasmonics - A novel multifunction filter based on the model of Fabry-Perot (F-P) resonant cavity is proposed in this paper. This filter is comprised of a rectangular cavity (400nm×200nm) and...  相似文献   

12.
We propose an ultrasmall plasmonic cavity based on the channel waveguides for chemical sensing. The plasmonic mode gap due to cutoff angular frequency enables strong optical confinement in a subwavelength volume and suppression of radiation loss. Due to strong field overlap of the surface plasmon polariton mode with environmental material, large sensitivity (1,100 nm/refractive index unit) and a high figure of merit (330) are achieved in the plasmonic cavity with a small physical size of 600?×?800?×?2,500 nm having a telecommunication resonant wavelength. This plasmonic cavity can introduce a broad range of applications including biochemical sensing and strong light–matter interactions.  相似文献   

13.
ONTOGENESIS OF HUMAN SMALLPOX VIRUS   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

14.

In the paper, resonances of different waveguide structures with various vertical indirect coupled cavities were investigated by FDTD (finite difference-time domain). In the silicon cavity, Fano resonance could be observed at about 1430 nm. The coupling distance for the gold cavity/air cavity had less effect on the transmittance of the main waveguide but had a great influence on the transmission for water cavity in the visible region, which showed that water cavity could adjust resonance of waveguide structures. In addition, with the increment of refractive index n, the resonance peak at about 850 nm moved to the long wavelength (redshift). Dispersion rate about 2 × 10–3/nm indicated that the transparent dielectric selectively absorbed the surface plasmon polariton wave and the sensitivity of the waveguide structure designed in this paper has high stability for the refractive index of the main waveguide cavity. Obvious Fano resonance could be observed with the increase of refractive index for silicon cavity. Among the four dielectrics, silicon and water are suitable for studying Fano resonance and filter dielectrics.

  相似文献   

15.

In this paper, the simultaneous switching and sensing capabilities of a compact plasmonic structure based on a conventional rectangular hole in a silver film are proposed and investigated. The proposed structure has ultrahigh sensitivity up to 3000 nm/RIU and high figure of merit of 170 RIU−1. Also, the simulation results show the potential of the presented refractive index sensor to detect malaria infection, cancer cells, bacillus bacteria, and solution of glucose in water. Simultaneously, by changing the incident lightwave polarization, the structure behaves like a plasmonic switch, which has high extinction ratios of 15.81, 31.20, and 25.03 dB at three telecommunication wavelengths of 850, 1310, and 1550 nm, respectively. The ultrafast response time of 20 fs is achieved for the wideband application of the switching capability at the wavelength range of 1056 to 1765 nm. Moreover, the equivalent circuit model and transmission (ABCD) matrix methods are derived to validate the simulated results. Simple design, good agreement between the numerical and analytical results, biomedical applications, ultrahigh sensitivity, and ultrafast performance of the proposed structure help this idea to open up paths for design and implementation of other multi-application plasmonic devices in near-infrared region. To the best of our knowledge, the mentioned analytical methods have not been studied former at near-infrared wavelengths. Therefore, the achievements could pave the way for verifying the simulation results of plasmonic nanostructures in future investigations.

  相似文献   

16.
Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.  相似文献   

17.
In this paper, a high-sensitivity refractive index sensor based on a hybrid plasma waveguide and metal–insulator–metal waveguide combined third-order runway series mosaic microring resonator is proposed. In this structure, a GaAs waveguide ring surrounds a gold waveguide ring in the middle, and the innermost layer is a disk made of gold material. The outer groove waveguide is composed of GaAs-air-alloy, and the inner groove waveguide is made of the Gold-Air-Gold material disc. By filling different substances in the groove, the change of refractive index will affect the optical signal strength of the output spectrum. The finite element method simulates the transmission spectrum and electric field distribution of the sensor structure. The amplitude coupling coefficient and attenuation factor affecting the resonator's performance are analyzed, and the structural parameters of the slot waveguide are optimized. The numerical simulation results show that the sensor quality factor of this structure is 1.54 × 104, the sensitivity is 1.2 × 103 nm/RIU which is about 1.5 times higher than that of the Si ring with the same structure, the detection limit can reach 8.1892 × 10−7 RIU, and the free spectral range can reach 109 nm. Compared with the traditional microring structure, this microring has higher design freedom and free spectral range and is more suitable for producing biosensors with high sensitivity, low detection limit, and multi-parameter measurement.  相似文献   

18.
The 3D finite difference time domain technique was carried out to study the optical transmission properties of nano-hole arrays in the gold thin film supported by materials with different index of refraction in the visible and infrared regions. A series of perforated nano-hole structures on the gold film at different hole radius, hole depth of 100 nm, and structural periodicity of 400 nm were studied. It was found that transmission properties (i.e., intensity, FWHM, and resonance position) were strongly affected by hole radius and surrounding medium index of refraction. The maximum optical transmittance was observed as 31.9 % in a nano-hole array of hole radius of 125 nm and refractive index of 1.3. The maximum sensitivity of 300 nm/RIU was obtained at index of refraction of 1.7, whereas the minimum one was calculated as 110 nm/RIU in a nano-hole array of hole radius of 50 nm. It was also found that on increasing the hole radius from 50 to 125 nm, the spectral sensitivity was decreased, whereas the index sensitivity was increased on increasing the refractive index.  相似文献   

19.
Polarization-dependent light transmission property is investigated in two-dimensional plasmonic ladder-like structure in the Near-infrared (NIR) regime of 900 to 1600 nm. The plasmonic ladder-like structures are fabricated using cost-effective laser interference lithography. Optical transmission studies reveal that in the stated NIR regime, the structure has nearly 30 % absolute transmission with respect to air when the long axis is aligned parallel to the polarization axis of the incident excitation and has negligible transmission at the crossed polarization state. The findings have potential implications in designing large area flat NIR polarizers.  相似文献   

20.
Efficiency is an important criterion in developing a practical surface-plasmon-polariton (SPP) unidirectional launcher. In this paper, we show that multi-groove structures can efficiently launch SPPs by numerically optimizing structural parameters and normal incident light. Experimentally, a high efficiency of 58.4 % is demonstrated in a six-groove structure with a lateral dimension of 3.9 μm. For a three-groove structure with even smaller lateral dimension of 1.35 μm, the efficiency presents a broadband response, which remains higher than 42 % from 720 to 860 nm. The proposed multi-groove structures with high SPP launching efficiency and small size exhibit potential in highly integrated plasmonic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号