首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:分析侵袭性肺曲霉病患者辅助性T细胞(Th)以及调节性T细胞(Treg)在外周血中单个核细胞中的表达情况及其临床相关性,探讨Th和Treg细胞介导的免疫反应在侵袭性肺曲霉病中的作用。方法分离21例侵袭性肺曲霉病患者及19例健康人外周血的单个核细胞,采用流式细胞术分析Th1、Th2、Th17、Treg细胞群的表达情况,Real-timePCR方法检测相关转录因子T-bet、GATA-3、RORγt以及Foxp3的表达,ELISA法检测血清中相关细胞因子IFN-γ、IL-4、IL-17以及TGF-β的表达。结果与健康人对照组相比,侵袭性肺曲霉病患者Th1细胞以及Treg细胞占CD4+T细胞的比例较之对照组明显降低;Th1、Th17、Treg细胞相关转录因子T-bet、RORγt、Foxp3以及相关细胞因子IFN-γ、IL-17A、TGF-β与对照组相比表达明显降低。结论IPA患者的Th1、Th17以及Treg细胞所介导的免疫反应受抑制。  相似文献   

2.
Transforming growth factor (TGFβ) prevents TH1 and TH2 differentiation and converts naïve CD4 cells into Foxp3-expressing T regulatory (Treg) cell1, 2. In sharp contrast, in the presence of pro-inflammatory cytokines, including IL-6, TGFβ not only inhibits Foxp3 expression but also promotes the differentiation of pro-inflammatory IL17-producing CD4 effector T (TH17) cells3-5. This reciprocal TGFβ-dependent differentiation imposes a critical dilemma between pro- and anti-inflammatory immunity and suggests that a sensitive regulatory mechanism must exist to control TGFβ-driven TH17 effector and Treg differentiation. A vitamin A metabolite, retinoic acid (RA), was recently identified as a key modulator of TGFβ-driven immune deviation capable of suppressing TH17 differentiation while promoting Foxp3+Treg generation 6-10.  相似文献   

3.
4.
The immune system has evolved regulatory mechanisms to control immune responses to self-antigens. Regulatory T (Treg) cells play a pivotal role in maintaining immune tolerance, but tumour growth is associated with local immunosuppression, which can subvert effector immune responses. Indeed, the induction and recruitment of Treg cells by tumours is a major barrier in the development of effective immunotherapeutics and vaccines against cancer. Retinoic acid (RA) has been shown to promote conversion of naïve T cells into Treg cells. This study addresses the hypothesis that blocking RA receptor alpha (RARα) may enhance the efficacy of a tumour vaccine by inhibiting the induction of Treg cells. We found that RA significantly enhanced TGF-β-induced expression of Foxp3 on naïve and committed T cells in vitro and that this was blocked by an antagonist of RARα (RARi). In addition, RARi significantly suppressed TGF-β and IL-10 and enhanced IL-12 production by dendritic cells (DC) in response to killed tumour cells or TLR agonists. Furthermore, RARi augmented the efficacy of an antigen-pulsed and TLR-activated DC vaccine, significantly attenuating growth of B16 tumours in vivo and enhancing survival of mice. This protective effect was associated with significant reduction in tumour-infiltrating FoxP3+ and IL-10+ Treg cells and a corresponding increase in tumour-infiltrating CD4+ and CD8+ T cells that secreted IFN-γ. Our findings demonstrate that RARα is an important target for the development of effective anti-tumour immunotherapeutics and for improving the efficacy of cancer vaccines.  相似文献   

5.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

6.
目的探究子宫内膜异位症患者免疫调节Th17细胞及Treg细胞的表达意义。 方法选取2017年1月至2018年12月青岛大学附属医院收治患有子宫内膜异位症的患者,为子宫内膜异位组(EMT组),选取同一时期在医院因不孕不育进行腹腔镜检查的患者,为正常组(NM组),两组分别56例。EMT组和NM组患者在一般资料上差异无统计学意义。通过流式细胞仪、HE染色法、qRT-PCR法、ELISA法分析EMT组和NM组患者Th17、Treg细胞所占比例、子宫内膜组织病变情况、ROR-γt、Foxp3 mRNA表达含量的差异性来探究子宫内膜异位症患者Th17细胞及Treg细胞变化。实验结果用 ±s表示,并采用独立样本t检验进行比较。 结果EMT组患者CD4+ T细胞中Th17所占比例为5.48±2.81,Treg所占比例为4.22±1.04,NM组Th17所占比例为2.34±1.01,Treg所占比例为6.14±1.52,差异均有统计学意义(t = 7.869,3.015,P = 0.014,0.026)。EMT组患者血清中IL-17水平为(256.38±34.15)?pg/ ml、IL-22为(67.48±10.89)?pg/ml,NM组患者血清中IL-17水平为(198.04±27.59)?pg/ml、IL-22为(43.78±6.92)?pg/ml,差异均有统计学意义(t = 9.944,4.689,P = 0.008,0.017)。EMT组患者血清中IL-10水平为(18.56±4.77)?pg/ml、TGF-β为(148.28±40.52) pg/ ml,NM组患者血清中IL-10水平为(28.35±6.07)pg/ml、TGF-β为(204.78±19.87)pg/ml,差异均有统计学意义(t = 9.491,2.849,P = 0.012,0.034)。EMT组患者子宫内膜组织形态不规则,多数细胞不完整,破损或缺失,且炎性细胞增多,在其周围聚集。NM组患者子宫内膜组织形态规则,细胞没有明显破损或缺失,未见细胞周围炎性因子增多。qRT-PCR检测结果显示,EMT组和NM组ROR-γ mRNA分别为2.89±0.76、1.71±0.26,EMT组和NM组Foxp3 mRNA分别为2.25±0.34、1.13±0.18,两组差异均有统计学意义(t = 10.996,6.759,P = 0.006,0.011)。 结论子宫内膜异位症患者外周血免疫调节细胞Th17/Treg平衡失调,免疫调节紊乱与子宫内膜异位发生、发展有密切关系。  相似文献   

7.
8.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose symptoms include communication deficits, a lack of social skills, and stereotyped repetitive behaviors. We used BTBR T+ Itpr3tf/J (BTBR) mice, a model that demonstrates most of the core behavioral features of ASD, such as decreased sociability and high levels of repetitive behaviors. Currently, there is no treatment available that is able to improve most of the ASD disorder symptoms; thus, finding novel therapies is immediately required. Stat3 inhibitors are potential targets in the treatment of several immune disorders. The aim of the present study was to investigate the effects of S3I-201, a selective Stat3 inhibitor, to determine its potential mechanism in BTBR mice. In this study, we first examined the effects of S3I-201 on repetitive behavior and marble burying. We also examined the treatment of S3I-201 on Th1 (IFN-γ and T-bet), Th17 (IL-17A, RORγt, Stat3, IL-21, and IL-22), and T regulatory (Treg, Foxp3 and Helios) production in spleen CD4+ T cells. We further assessed Th1, Th17, and Treg mRNA and protein expression levels in brain tissues. S3I-201 treatment in BTBR mice significantly prevents marble burying and repetitive behavior. Furthermore, S3I-201 administration causes a considerable decrease in IFN-γ, T-bet, IL-17A, RORγt, Stat3, IL-21, and IL-22 levels, and increases in Foxp3 and Helios production CD4+ T cells in BTBR mice. Additionally, S3I-201 treatment also significantly decreases Th1 and Th17 levels, and increases Treg mRNA and protein expression levels. Therefore, these results suggest that S3I-201 could be considered as a therapeutic option for ASD.  相似文献   

9.
Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by uncontrolled joint inflammation and damage to bone and cartilage. Previous studies have shown that chemokine receptors have important roles in RA development, and that blocking these receptors effectively inhibits RA progression. Our study was undertaken to investigate the role of AMG487, a selective CXCR3 antagonist, in DBA/1J mice bearing collagen-induced arthritis (CIA). Following induction of CIA, animals were treated with 5 mg/kg AMG487 intraperitoneally every 48 h, starting from day 21 until day 41 and evaluated for clinical score, and histological hallmarks of arthritic inflammation. We further investigated the effect of AMG487 on Th1 (T-bet), Th17 (IL-17A, RORγt, STAT3), Th22 (IL-22), and T regulatory (Treg; Foxp3 and IL-10) cells in splenic CXCR3+ and CD4+ T cells using flow cytometry. We also assessed the effect of AMG487 on T-bet, RORγt, IL-17A, IL-22, Foxp3, and IL-10 at both mRNA and protein levels using RT-PCR and Western blot analyses of knee samples. The severity of clinical scores, and histological inflammatory damage decreased significantly in AMG487-treated compared with CIA control mice. Moreover, the percentage of Th1, Th17, and Th22 cells decreased significantly and that of Treg cells increased in AMG487-treated mice. We further observed that AMG487-treatment downregulated T-bet, IL-17A, RORγt, and IL-22, whereas it upregulated Foxp3 and IL-10 mRNA and protein levels. This study demonstrates the antiarthritic effects of AMG487 in CIA animal model and supports the development of CXCR3 antagonists as a novel strategy for the treatment of inflammatory and arthritic conditions.  相似文献   

10.
11.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

12.
IL-17A, produced by Th17 cells, may play a dual role in antitumor immunity. Using the GL261-glioma model, we investigated the effects of Th17 cells on tumor growth and microenvironment. Th17 cells infiltrate mouse gliomas, increase significantly in a time-dependent manner similarly to Treg and do not express Foxp3. To characterize the direct effects of Th17 cells on GL261 murine gliomas and on tumor microenvironment, we isolated IL-17-producing cells enriched from splenocytes derived from naïve (nTh17) or glioma-bearing mice (gTh17) and pre-stimulated in vitro with or without TGF-β. Spleen-derived Th17 cells co-expressing IL-17, IFN-γ and IL-10, but not Treg marker Foxp3, were co-injected intracranially with GL261 in immune-competent mice. Mice co-injected with GL261 and nTh17 survived significantly longer than gTh17 (P < 0.006) and gliomas expressed high level of IFN-γ and TNF-α, low levels of IL-10 and TGF-β. In vitro IL-17 per se did not exert effects on GL261 proliferation; in vivo gliomas grew equally well intracranially in IL-17 deficient and wild-type mice. We further analyzed relationship between Th17 cells and Treg. Treg were significantly higher in splenocytes from glioma-bearing than naïve mice (P = 0.01) and gTh17 produced more IL-10 than IFN-γ (P = 0.002). In vitro depletion of Treg using PC61 in splenocytes from glioma-bearing mice causes increased IL-17/IFN-γ cells (P = 0.007) and decreased IL-17/IL-10 cells (P = 0.03). These results suggest that Th17 polarization may be induced by Treg and that Th17 cells in gliomas modulate tumor growth depending on locally produced cytokines.  相似文献   

13.
IL-2 and TGF-β1 play key roles in the immunobiology of Foxp3-expressing CD25(+)CD4(+) T cells (Foxp3(+)Treg). Administration of these cytokines offers an appealing approach to manipulate the Foxp3(+)Treg pool and treat T cell-mediated autoimmunity such as type 1 diabetes. However, efficacy of cytokine treatment is dependent on the mode of application, and the potent pleiotropic effects of cytokines like IL-2 may lead to severe side effects. In the current study, we used a gene therapy-based approach to assess the efficacy of recombinant adeno-associated virus vectors expressing inducible IL-2 or TGF-β1 transgenes to suppress ongoing β cell autoimmunity in NOD mice. Intramuscular vaccination of recombinant adeno-associated virus to 10-wk-old NOD female mice and a subsequent 3 wk induction of IL-2 was sufficient to prevent diabetes and block the progression of insulitis. Protection correlated with an increased frequency of Foxp3(+)Treg in the periphery as well as in the draining pancreatic lymph nodes and islets. IL-2 induced a shift in the ratio favoring Foxp3(+)Treg versus IFN-γ-expressing T cells infiltrating the islets. Induction of IL-2 had no systemic effect on the frequency or activational status of T cells and NK cells. Induction of TGF-β1 had no effect on the Foxp3(+)Treg pool or the progression of β cell autoimmunity despite induced systemic levels of activated TGF-β1 that were comparable to IL-2. These results demonstrate that inducible IL-2 gene therapy is an effective and safe approach to manipulate Foxp3(+)Treg and suppress T cell-mediated autoimmunity and that under the conditions employed, IL-2 is more potent than TGF-β1.  相似文献   

14.
15.
Inflammatory bowel disease (IBD), which is characterized by a dysregulated intestinal immune response, is postulated to be controlled by intestinal self-antigens and bacterial Ags. Fecal extracts called cecal bacterial Ag (CBA) have been implicated in the pathogenesis of IBD. In this study, we identified a major protein of CBA related to the pathogenesis of IBD and established a therapeutic approach using Ag-pulsed regulatory dendritic cells (Reg-DCs). Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, carbonic anhydrase I (CA I) was identified as a major protein of CBA. Next, we induced colitis by transfer of CD4(+)CD25(-) T cells obtained from BALB/c mice into SCID mice. Mice were treated with CBA- or CA I-pulsed Reg-DCs (Reg-DCs(CBA) or Reg-DCs(CA1)), which expressed CD200 receptor 3 and produced high levels of IL-10. Treatment with Reg-DCs(CBA) and Reg-DCs(CA1) ameliorated colitis. This effect was shown to be Ag-specific based on no clinical response of irrelevant Ag (keyhole limpet hemocyanin)-pulsed Reg-DCs. Foxp3 mRNA expression was higher but RORγt mRNA expression was lower in the mesenteric lymph nodes (MLNs) of the Reg-DCs(CA1)-treated mice compared with those in the MLNs of control mice. In the MLNs, Reg-DCs(CA1)-treated mice had higher mRNA expression of IL-10 and TGF-β1 and lower IL-17 mRNA expression and protein production compared with those of control mice. In addition, Reg-DCs(CBA)-treated mice had higher Foxp3(+)CD4(+)CD25(+) and IL-10-producing regulatory T cell frequencies in MLNs. In conclusion, Reg-DCs(CA1) protected progression of colitis induced by CD4(+)CD25(-) T cell transfer in an Ag-specific manner by inducing the differentiation of regulatory T cells.  相似文献   

16.
17.
18.
Lu Y  Xiao J  Wu ZW  Wang ZM  Hu J  Fu HZ  Chen YY  Qian RQ 《Phytomedicine》2012,19(10):882-889
Rheumatoid arthritis is characterized by the imbalance of T cells, which leads to increased pro-inflammatory and reduced anti-inflammatory cytokines. Modulating the balance among T cells is crucial for the treatment of RA. Kirenol is a major diterpenoid components of Herba Siegesbeckiae, which has been applied for arthritic therapy for centuries. Since prior research showed Kirenol exhibited anti-inflammatory effect in rats, in this study we have evaluated the effect and mechanism of bioactive Kirenol in a rat model of collagen-induced arthritis (CIA) on modulation of T cells. After immunization with bovine type II collagen (CII), Wistar rats were orally administered saline (CIA group), 2 mg/kg Kirenol or 2 mg/kg prednisolone daily for 30 days. The severity of arthritis was clinically and histologically assessed. The numbers of CD4?CD25?Foxp3? T regulatory cells (Tregs) and IFNγ?CD4? and IL4?CD4? T cells were determined by flow cytometry, the mRNA expression level of Foxp3 was quantified by RT-PCR, cytokine levels were measured by ELISA and CII-induced cell proliferation was quantified in vitro. Kirenol significantly delayed the occurrence and reduced the disease severity of CIA. Histological analysis confirmed Kirenol suppressed joint inflammation and inhibited cartilage and bone destruction, compared to the CIA group. Kirenol also upregulated the mRNA expression of Foxp3, increased the numbers of CD4?CD25?Foxp3? and IL4?CD4? T cells, and reduced the number of IFNγ?CD4? T cells. Kirenol reduced the levels of TNF-α, IL-17A and IL-6 in synovial fluid and TNF-α, IL-17A and IFN-γ in serum, and increased the serum levels of IL-4, IL-10 and TGF-β1. In addition, Kirenol inhibited the ability of CII to induce splenocyte, PBMC and lymph node cell proliferation in vitro, compared to cells from CIA rats. In conclusion, these results suggest that Kirenol may be a potential immunosuppressant for the treatment for rheumatoid arthritis.  相似文献   

19.
20.
Inhibition of the nuclear receptor Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) is a promising strategy for the treatment of autoimmune diseases. In this paper, we describe a series of allosteric, cysteine-dependent, inverse agonists of RORγt. Site-directed mutagenesis and molecular dynamics simulations are supportive of a mechanism of action through specific binding to Cys476 on alpha helix 11 of the ligand binding domain (LBD). Representative compounds in the series selectively inhibit RORγt, potently suppress interleukin-17A (IL-17A) production by human CD4+ T cells, and inhibit T helper 17 (Th17) differentiation from human naïve CD4+ T cells. The advanced compound 13 is orally bioavailable and active at a dose of 3 mg/kg in a murine collagen-induced model of rheumatoid arthritis. Collectively, these data are supportive of the development of compound 13 in autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号