首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and other places in Saudi Arabia, and has quickly spread to European and Asian countries since September 2012. Up to the 1st October 2015 it has infected at least 1593 people with a global fatality rate of about 35%. Studies to understand the virus are necessary and urgent. In the present study, MERS-CoV main protease (Mpro) is expressed; the dimerization of the protein and its relationship to catalysis are investigated.

Methods and Results

The crystal structure of MERS-CoV Mpro indicates that it shares a similar scaffold to that of other coronaviral Mpro and consists of chymotrypsin-like domains I and II and a helical domain III of five helices. Analytical ultracentrifugation analysis demonstrated that MERS-CoV Mpro undergoes a monomer to dimer conversion in the presence of a peptide substrate. Glu169 is a key residue and plays a dual role in both dimerization and catalysis. The mutagenesis of other residues found on the dimerization interface indicate that dimerization of MERS-CoV Mpro is required for its catalytic activity. One mutation, M298R, resulted in a stable dimer with a higher level of proteolytic activity than the wild-type enzyme.

Conclusions

MERS-CoV Mpro shows substrate-induced dimerization and potent proteolytic activity. A critical assessment of the residues important to these processes provides insights into the correlation between dimerization and catalysis within the coronaviral Mpro family.  相似文献   

2.
The 3C-like proteinase (3CLpro) of the severe acute respiratory syndrome (SARS) coronavirus plays a vital role in virus maturation and is proposed to be a key target for drug design against SARS. Various in vitro studies revealed that only the dimer of the matured 3CLpro is active. However, as the internally encoded 3CLpro gets matured from the replicase polyprotein by autolytic cleavage at both the N-terminal and the C-terminal flanking sites, it is unclear whether the polyprotein also needs to dimerize first for its autocleavage reaction. We constructed a large protein containing the cyan fluorescent protein (C), the N-terminal flanking substrate peptide of SARS 3CLpro (XX), SARS 3CLpro (3CLP), and the yellow fluorescent protein (Y) to study the autoprocessing of 3CLpro using fluorescence resonance energy transfer. In contrast to the matured 3CLpro, the polyprotein, as well as the one-step digested product, 3CLP-Y-His, were shown to be monomeric in gel filtration and analytic ultracentrifuge analysis. However, dimers can still be induced and detected when incubating these large proteins with a substrate analog compound in both chemical cross-linking experiments and analytic ultracentrifuge analysis. We also measured enzyme activity under different enzyme concentrations and found a clear tendency of substrate-induced dimer formation. Based on these discoveries, we conclude that substrate-induced dimerization is essential for the activity of SARS-3CLpro in the polyprotein, and a modified model for the 3CLpro maturation process was proposed. As many viral proteases undergo a similar maturation process, this model might be generally applicable.  相似文献   

3.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PLpro) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PLpro was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PLpro domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PLpro, we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PLpro to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PLpro DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PLpro domain was found to suppress IFN-β promoter activation, PLpro variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PLpro, and not its proteolytic activity per se, in the inhibition of IFN-β promoter activity. The ability to decouple the DUB activity of PLpro from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PLpro as a viral DUB during MERS-CoV infection.  相似文献   

4.

Backgrounds

A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated.

Results

Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference.

Conclusions

Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.  相似文献   

5.
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CLpro. 3CLpro plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CLpro inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CLpro. Structure–activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k1 showed most potent inhibitory activity against 3CLpro (IC50 = 1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.  相似文献   

6.
The 3C-like protease (3CLpro) of SARS-CoV-2 is a potential therapeutic target for COVID-19. Importantly, it has an abundance of structural information solved as a complex with various drug candidate compounds. Collecting these crystal structures (83 Protein Data Bank (PDB) entries) together with those of the highly homologous 3CLpro of SARS-CoV (101 PDB entries), we constructed the crystal structure ensemble of 3CLpro to analyze the dynamic regulation of its catalytic function. The structural dynamics of the 3CLpro dimer observed in the ensemble were characterized by the motions of four separate loops (the C-loop, E-loop, H-loop, and Linker) and the C-terminal domain III on the rigid core of the chymotrypsin fold. Among the four moving loops, the C-loop (also known as the oxyanion binding loop) causes the order (active)–disorder (collapsed) transition, which is regulated cooperatively by five hydrogen bonds made with the surrounding residues. The C-loop, E-loop, and Linker constitute the major ligand binding sites, which consist of a limited variety of binding residues including the substrate binding subsites. Ligand binding causes a ligand size dependent conformational change to the E-loop and Linker, which further stabilize the C-loop via the hydrogen bond between the C-loop and E-loop. The T285A mutation from SARS-CoV 3CLpro to SARS-CoV-2 3CLpro significantly closes the interface of the domain III dimer and allosterically stabilizes the active conformation of the C-loop via hydrogen bonds with Ser1 and Gly2; thus, SARS-CoV-2 3CLpro seems to have increased activity relative to that of SARS-CoV 3CLpro.  相似文献   

7.
Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. Based on a scaffold we reported for inhibiting neuraminidase (NA), we synthesized the analogues and identified compounds with low micromolar inhibitory activity against 3CLpro of SARS-CoV and MERS-CoV. Docking studies show that a carboxylate present at either R1 or R4 destabilizes the oxyanion hole in the 3CLpro. Interestingly, 3f, 3g and 3m could inhibit both NA and 3CLpro and serve as a starting point to develop broad-spectrum antiviral agents.  相似文献   

8.
The severe acute respiratory syndrome (SARS) virus depends on a chymotrypsin-like cysteine proteinase (3CLpro) to process the translated polyproteins to functional viral proteins. This enzyme is a target for the design of potential anti-SARS drugs. A series of ketones and corresponding mono- and di-fluoro ketones having two or three aromatic rings were synthesized as possible reversible inhibitors of SARS 3CLpro. The design was based on previously established potent inhibition of the enzyme by oxa analogues (esters), which also act as substrates. Structure-activity relationships and modeling studies indicate that three aromatic rings, including a 5-bromopyridin-3-yl moiety, are key features for good inhibition of SARS 3CLpro. Compound 11d, 2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)ethanone and its α-monofluorinated analogue 12d, gave the best reversible inhibition with IC50 values of 13 μM and 28 μM, respectively. In contrast to inhibitors having two aromatic rings, α-fluorination of compounds with three rings unexpectedly decreased the inhibitory activity.  相似文献   

9.
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.  相似文献   

10.
Picornaviruses (PV) and coronaviruses (CoV) are positive-stranded RNA viruses which infect millions of people worldwide each year, resulting in a wide range of clinical outcomes. As reported in this study, using high throughput screening against ∼6800 small molecules, we have identified several novel inhibitors of SARS-CoV 3CLpro with IC50 of low μM. Interestingly, one of them equally inhibited both 3Cpro and 3CLpro from PV and CoV, respectively. Using computer modeling, the structural features of these compounds as individual and common protease inhibitors were elucidated to enhance our knowledge for developing anti-viral agents against PV and CoV.  相似文献   

11.
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.  相似文献   

12.
Since the emergence of the severe acute respiratory syndrome (SARS) to date, neither an effective antiviral drug nor a vaccine against SARS is available. However, it was found that a mixture of two HIV-1 proteinase inhibitors, lopinavir and ritonavir, exhibited some signs of effectiveness against the SARS virus. To understand the fine details of the molecular interactions between these proteinase inhibitors and the SARS virus via complexation, molecular dynamics simulations were carried out for the SARS-CoV 3CLpro free enzyme (free SARS) and its complexes with lopinavir (SARS-LPV) and ritonavir (SARS-RTV). The results show that flap closing was clearly observed when the inhibitors bind to the active site of SARS-CoV 3CLpro. The binding affinities of LPV and RTV to SARS-CoV 3CLpro do not show any significant difference. In addition, six hydrogen bonds were detected in the SARS-LPV system, while seven hydrogen bonds were found in SARS-RTV complex.  相似文献   

13.
14.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Structure based virtual screening of 308 307 chemical compounds was performed using the computation tool Autodock 3.0.5 on a WISDOM Production Environment. The top 1468 ranked compounds with free binding energy ranging from −14.0 to −17.09 kcal mol−1 were selected to check the hydrogen bond interaction with amino acid residues in the active site of 3CLpro. Fifty-three compounds from 35 main groups were tested in an in vitro assay for inhibition of 3CLpro expressed by Escherichia coli. Seven of the 53 compounds were selected; their IC50 ranged from 38.57 ± 2.41 to 101.38 ± 3.27 μM. Two strong 3CLpro inhibitors were further identified as competitive inhibitors of 3CLpro with Ki values of 9.11 ± 1.6 and 9.93 ± 0.44 μM. Hydrophobic and hydrogen bond interactions of compound with amino acid residues in the active site of 3CLpro were also identified.  相似文献   

15.
New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.  相似文献   

16.
Chuck CP  Chow HF  Wan DC  Wong KB 《PloS one》2011,6(11):e27228

Background

Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CLpro), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection.

Methodology/Principal Findings

Here, we profiled the substrate specificities of 3CLpro from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19×8 of variants with single substitutions at P5 to P3'' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CLpro prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1'' and P2'' positions. Despite 3CLpro from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CLpro prefers P4-Pro and SARS-CoV 3CLpro prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences ‘VARLQ↓SGF’ that can be cleaved efficiently by all 3CLpro with relative activity of 1.7 to 3.2, and ‘VPRLQ↓SGF’ that can be cleaved specifically by IBV 3CLpro with relative activity of 4.3.

Conclusions/Significance

The comprehensive substrate specificities of 3CLpro from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.  相似文献   

17.

Background

The 3C-like protease (3CLpro) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection.

Methodology/Principal Findings

To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3'' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1'' position prefers small residues, while P2'' and P3'' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3'' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence.

Conclusions/Significance

Our results demonstrated a strong structure-activity relationship between the 3CLpro and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors.  相似文献   

18.
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins.  相似文献   

19.
20.
A non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold was evaluated as a novel inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CLpro). The decahydroisoquinolin scaffold has been demonstrated to be an effective hydrophobic center to interact with S2 site of SARS 3CLpro, but the lack of interactions at S3 to S4 site is thought to be a major reason for the moderate inhibitory activity. In this study, the effects of an additional non-prime site substituent on the scaffold as well as effects of several warheads are evaluated. For the introduction of a desired non-prime site substituent, amino functionality was introduced on the decahydroisoquinolin scaffold, and the scaffold was constructed by Pd(II) catalyzed diastereoselective ring formation. The synthesized decahydroisoquinolin inhibitors showed about 2.4 times potent inhibitory activities for SARS 3CLpro when combined with a non-prime site substituent. The present results indicated not only the expected additional interactions with the SARS 3CLpro but also the possibility of new inhibitors containing a fused-ring system as a hydrophobic scaffold and a new warhead such as thioacetal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号