首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hodgkin’s lymphoma is an example for a tumor with an extremely tight interaction of tumor cells with cells from the tumor micro-environment. These so-called bystander cells are not inert but interact actively with the tumor cells. Some of these cells support tumor growth by delivery of co-stimulating and anti-apoptotic signals (“helper cells”). Other cells (“killer cells”) are involved in the anti-tumor immune response which is obviously not efficient enough for tumor elimination. The activity of both helper cells and killer cells is regulated by additional cells in the stroma (“regulatory cells”). The dynamic behavior of such multi-component systems is difficult to predict. In the present paper we propose a model that can be used for simulation of essential features of this system. In this model, tumor growth depends on (i) presence of few cancer stem cells, (ii) co-stimulation of cancer cells by the tumor stroma, (iii) activity of regulatory cells that suppress killer cells without suppression of helper cells. The success of cytotoxic/cytostatic therapy in this model varies depending on the therapy-related toxicity for each of the cell populations. The model also allows the analysis of immunotherapeutic interventions. Under certain conditions, paradox enhancement of tumor growth can occur after therapeutic intervention. The model might be useful for the design of new treatment strategies for Hodgkin’s lymphoma and other tumors with prominent tumor-stroma interaction.  相似文献   

2.
Tumors create a unique immunosuppressive microenvironment (tumor microenvironment, TME) whereby leukocytes are recruited into the tumor by various chemokines and growth factors. However, once in the TME, these cells lose the ability to promote anti-tumor immunity and begin to support tumor growth and down-regulate anti-tumor immune responses. Studies on tumor-associated leukocytes have mainly focused on cells isolated from tumor-draining lymph nodes or spleen due to the inherent difficulties in obtaining sufficient cell numbers and purity from the primary tumor. While identifying the mechanisms of cell activation and trafficking through the lymphatic system of tumor bearing mice is important and may give insight to the kinetics of immune responses to cancer, in our experience, many leukocytes, including dendritic cells (DCs), in tumor-draining lymph nodes have a different phenotype than those that infiltrate tumors. Furthermore, we have previously demonstrated that adoptively-transferred T cells isolated from the tumor-draining lymph nodes are not tolerized and are capable of responding to secondary stimulation in vitro unlike T cells isolated from the TME, which are tolerized and incapable of proliferation or cytokine production. Interestingly, we have shown that changing the tumor microenvironment, such as providing CD4(+) T helper cells via adoptive transfer, promotes CD8(+) T cells to maintain pro-inflammatory effector functions. The results from each of the previously mentioned studies demonstrate the importance of measuring cellular responses from TME-infiltrating immune cells as opposed to cells that remain in the periphery. To study the function of immune cells which infiltrate tumors using the Miltenyi Biotech isolation system, we have modified and optimized this antibody-based isolation procedure to obtain highly enriched populations of antigen presenting cells and tumor antigen-specific cytotoxic T lymphocytes. The protocol includes a detailed dissection of murine prostate tissue from a spontaneous prostate tumor model (TRansgenic Adenocarcinoma of the Mouse Prostate -TRAMP) and a subcutaneous melanoma (B16) tumor model followed by subsequent purification of various leukocyte populations.  相似文献   

3.
Management of parotid tumors can be based on a clinical classification of these lesions as being either “encapsulated” or infiltrating.The Warthin tumor (papillary cystadenolymphomatosum) is a benign encapsulated tumor, often occurring multicentrically or bilaterally especially in the lower pole area of the parotid. It is characterized clinically by its softness and fluctuation in size and a high incidence in elderly men.The so-called “capsule” of well demarcated mixed and mucoepidermoid tumors is represented by a condensation of host fibrous stroma, in the interstices of which tumor cells may be present.The “encapsulated” tumors should be excised with a “shell” of uninvolved parotid tissue. To do this safely, the facial nerve should first be isolated.Total parotidectomy is necessary only if the size of the tumor, the multiplicity of recurrences, or the infiltrating nature of the tumor are such that complete eradication of the primary site must be done.Radical neck dissection is never performed electively except in the small group of nonencapsulated infiltrating primary lesions.In a series of cases of previously untreated parotid tumors treated by the method outlined, the local parotid recurrence rate was less than 1 per cent.  相似文献   

4.
Cancer therapy by endogenous or adoptively transferred anti-tumor T cells is considered complementary to conventional cancer treatment by surgery, radiotherapy or chemotherapy. However, the scope of promising immunotherapeutic protocols is currently limited because tumors can create a “hostile” immunosuppressive microenvironment that prevents their destruction by anti-tumor T cells. There is a possibility to develop better and more effective immunotherapies by inactivating mechanisms that inhibit anti-tumor T cells in the tumor microenvironment and thereby protect cancerous tissues from immune damage. This may be now possible because of the recent demonstration that genetic deletion of immunosuppressive A2A and A2B adenosine receptors (A2AR and A2BR) or their pharmacological inactivation can prevent the inhibition of anti-tumor T cells by the hypoxic tumor microenvironment and as a result facilitate full tumor rejection [Ohta A, Gorelik E, Prasad SJ et al (2006) Proc Natl Acad Sci USA 103(35):13132–13137]. This approach is based on in vivo genetic evidence that A2AR play a critical role in the protection of normal tissues from overactive immune cells in acutely inflamed and hypoxic areas. The observations of much improved T-cell-mediated rejection of tumors in mice with inactivated A2AR strongly suggest that A2AR also protects hypoxic cancerous tissues and that A2AR should be inactivated in order to improve tumor rejection by anti-tumor T cells.  相似文献   

5.
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.  相似文献   

6.
Immune suppression remains a consistent obstacle to successful anti-tumor immune responses. As tumors develop, they create a microenvironment that not only supports tumor growth and metastasis but also reduces potential adaptive immunity to tumor antigens. Among the many components of this tumor microenvironment is a population of dendritic cells which exert profound immune suppressive effects on T cells. In this review, we discuss our recent findings related to these tumor-associated dendritic cells and how targeting them may serve to generate more durable anti-tumor immune responses.  相似文献   

7.
8.
转化生长因子β(transforming growth factorβ,TGF-β)是一种多功能的细胞因子,能够调控细胞增殖、分化、黏附、迁移及凋亡等行为,在胚胎发育过程和成体组织稳态维持中发挥重要的作用。而在许多疾病状态下,特别是在癌症中,TGF-β不仅能够影响肿瘤细胞的增殖与转移,其对于肿瘤微环境的调控与塑造也受到越来越多的关注。肿瘤微环境是指肿瘤在发生和发展过程中所处的内环境,由肿瘤细胞本身、相邻正常组织中的间质细胞,以及这些细胞所释放的众多细胞因子等共同组成。肿瘤微环境是肿瘤发展的重要机制,也是肿瘤临床治疗领域亟待探索的关键问题。TGF-β是调节肿瘤微环境组成和功能的主要参与者之一。在本综述中,将着重讨论TGF-β对于肿瘤微环境中的免疫监视机制及肿瘤细胞外基质的主要影响。即TGF-β对于构成先天性和获得性抗肿瘤免疫应答的各种类群的免疫细胞具有广泛的调控作用,从而削弱宿主的肿瘤免疫监视功能。同时,TGF-β通过促进肿瘤相关成纤维细胞的产生,以及肿瘤细胞外基质的纤维化,有助于肿瘤的恶变和转移。此外,还介绍了通过阻断肿瘤微环境中TGF-β信号通路进行肿瘤治疗的主要策略及独特优势。而未来进一步解析TGF-β信号在肿瘤微环境中的复杂调控作用,并建立有效的靶向干预方法对于开发高效的抗肿瘤药物具有重要的意义。  相似文献   

9.
The mechanisms by which B lymphocytes inhibit anti-tumor immunity remain poorly understood. Murine EMT-6 mammary tumors grow readily in immune competent mice (BALB/c), but poorly in B-cell-deficient μ?/? BALB/c mice (BCDM). T regulatory cell (Treg) expansion and function were impaired in BCDM compared with BALB/c. In this study, we compared tumor growth, Treg cell proliferation, tumor lymphocyte infiltration and cytolytic T cell activity in BALB/c, BCDM and BCDM partially reconstituted with B cells by adoptive transfer (BCDM+B). Partial reconstitution of BCDM with adoptively transferred B cells restored EMT-6 tumor growth, which was independent of IL-10 secretion by B cells. Instead, high frequencies of intratumoral B cells were associated with increased recruitment and proliferation of Treg cells within the tumor microenvironment. The B-cell-dependent accumulation of Treg within the tumor microenvironment was associated with reduced tumor infiltration by CD49+ NK and CD8+ T cells and reduced cytotoxic T cell activity against EMT-6 targets. Our studies indicate that tumor-dependent immunosuppression of T-cell-mediated anti-tumor immunity is coordinated within the tumor microenvironment by B-cell-dependent cross talk with Treg cells, which does not require production of IL-10 by B cells.  相似文献   

10.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

11.
The history of low-dose total-body irradiation (LTBI) as a means of radiotherapy for treating malignant tumors can be traced back to the 1920s. Despite this very low total dose, LTBI can induce long-term remissions. Tumor cells are known to change and maintain their own survival and development conditions through autocrine and paracrine signaling. LTBI can change the tumor microenvironment, enhance the infiltration of activated T cells, and trigger inflammatory processes. LTBI-mediated immune response can exert systemic long-term anti-tumor effects, and can induce tumor regression at the primary site and metastatic sites. With a continuous improvement in the anti-tumor immune microenvironment in the field of tumor therapy, LTBI provides more choices to comprehensively treat of tumors. The present study aimed to explore the experimental research mechanism of LTBI and immune microenvironment, and discuss the difficulties and development prospects of applying LTBI to tumor treatment.  相似文献   

12.
Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy “fuels” would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: “two-compartment tumor metabolism.” Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with “Warburg-like” cancer metabolism, as DRAM is a DNA damage/repair target gene.  相似文献   

13.
The purpose of this study was to investigate the anti-tumor effect and potential mechanisms of i.p. hyperthermia in combination with α-galactosylceramide (α-GalCer) for the treatment of ovarian cancer. In this study, immuno-competent tumor models were established using murine ovarian cancer cell lines and treated with i.p. hyperthermia combining α-GalCer. Th1/Th2 cytokine expression profiles in the serum, NK cell cytotoxicity and phagocytic activities of dendritic cells (DCs) were assayed. We also analyzed the number of CD8+/IFN-γ+ tumor specific cytotoxic T cells, as well as the tumor growth based on depletion of lymphocyte sub-population. Therapeutic effect on those ovarian tumors was monitored by a non-invasive luminescent imaging system. Intra-peritoneal hyperthermia induced significant pro-inflammatory cytokines expression, and sustained the response of NK and DCs induced by α-GalCer treatment. The combination treatment enhanced the cytotoxic T lymphocyte (CTL) immune response in two mouse ovarian cancer models. This novel treatment modality by combination of hyperthermia and glycolipid provides a pronounced anti-tumor immune response and better survival. In conclusion, intra-peritoneal hyperthermia enhanced the pro-inflammatory cytokine secretion and phagocytic activity of DCs stimulated by α-GalCer. The subsequent CTL immune response induced by α-GalCer was further strengthened by combining with i.p. hyperthermia. Both innate and adaptive immunities were involved and resulted in a superior therapeutic effect in treating the ovarian cancer.  相似文献   

14.
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257–264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257–264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257–264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.  相似文献   

15.
16.
Solid tumors are able to establish and sustain an immune suppressive microenvironment, which prevents the infiltration of cytotoxic effector immune cells into the tumor bed. We showed that genetic targeting of the macroautophagy/autophagy gene Becn1/Beclin1 in B16-F10 tumors inhibits their growth by inducing a massive infiltration of functional natural killer (NK) cells into the tumor bed. Such infiltration is primarily due to the ability of BECN1-defective tumor cells to overexpress and release CCL5 cytokine in the tumor microenvironment by a mechanism involving the activation of the MAPK8/JNK-JUN/c-Jun signaling pathway. Clinically, we reported a strong positive correlation between the expression of NK cell marker and CCL5 in human melanoma tumors and more importantly, a significant increased survival is found in melanoma patients expressing a high level of CCL5. Overall, these findings highlight the impact of targeting autophagy in breaking the immunosuppressive tumor microenvironment barrier, thus allowing the trafficking of cytotoxic NK cells into the tumor bed. This study underscore the importance of autophagy inhibition in tumors as a novel therapeutic strategy to fully exploit NK cells antitumor properties in clinical settings.  相似文献   

17.
It is now widely recognized that the tumor microenvironment promotes cancer cell growth and metastasis via changes in cytokine secretion and extra-cellular matrix remodeling. However, the role of tumor stromal cells in providing energy for epithelial cancer cell growth is a newly emerging paradigm. For example, we and others have recently proposed that tumor growth and metastasis is related to an energy imbalance. Host cells produce energy-rich nutrients via catabolism (through autophagy, mitophagy and aerobic glycolysis), which are then transferred to cancer cells, to fuel anabolic tumor growth. Stromal cell derived L-lactate is taken up by cancer cells and is used for mitochondrial oxidative phosphorylation (OXPHOS), to produce ATP efficiently. However, “parasitic” energy transfer may be a more generalized mechanism in cancer biology than previously appreciated. Two recent papers in Science and Nature Medicine now show that lipolysis in host tissues also fuels tumor growth. These studies demonstrate that free fatty acids produced by host cell lipolysis are re-used via β-oxidation (β-OX) in cancer cell mitochondria. Thus, stromal catabolites (such as lactate, ketones, glutamine and free fatty acids) promote tumor growth by acting as high-energy onco-metabolites. As such, host catabolism via autophagy, mitophagy and lipolysis may explain the pathogenesis of cancer-associated cachexia and provides exciting new druggable targets for novel therapeutic interventions. Taken together, these findings also suggest that tumor cells promote their own growth and survival by behaving as a “parasitic organism.” Hence, we propose the term “parasitic cancer metabolism” to describe this type of metabolic-coupling in tumors. Targeting tumor cell mitochondria (OXPHOS and β-OX) would effectively uncouple tumor cells from their hosts, leading to their acute starvation. In this context, we discuss new evidence that high-energy onco-metabolites (produced by the stroma) can confer drug resistance. Importantly, this metabolic chemo-resistance is reversed by blocking OXPHOS in cancer cell mitochondria, with drugs like Metformin, a mitochondrial “poison.” In summary, parasitic cancer metabolism is achieved architecturally by dividing tumor tissue into at least two well-defined opposing “metabolic compartments:” catabolic and anabolic.Key words: mitochondria, cancer metabolism, autophagy, mitophagy, aerobic glycolysis, lipolysis, oxidative phosphorylation, beta-oxidation, Metformin, drug discovery, drug resistance, chemo-resistance, Warburg effect, oncometabolite, parasite, metabolic compartments  相似文献   

18.
Tumor growth involves a dynamic interplay between cancer cells and host cells, which collectively form a tumor microenvironmental network that either suppresses or promotes tumor growth under different conditions. The transition from tumor suppression to tumor promotion is mediated by a tumor-induced shift in the local immune state, and despite the clinical challenge this shift poses, little is known about how such dysfunctional immune states are initiated. Clinical and experimental observations have indicated that differences in both the composition and spatial distribution of different cell types and/or signaling molecules within the tumor microenvironment can strongly impact tumor pathogenesis and ultimately patient prognosis. How such “functional” and “spatial” heterogeneities confer such effects, however, is not known. To investigate these phenomena at a level currently inaccessible by direct observation, we developed a computational model of a nascent metastatic tumor capturing salient features of known tumor-immune interactions that faithfully recapitulates key features of existing experimental observations. Surprisingly, over a wide range of model formulations, we observed that heterogeneity in both spatial organization and cell phenotype drove the emergence of immunosuppressive network states. We determined that this observation is general and robust to parameter choice by developing a systems-level sensitivity analysis technique, and we extended this analysis to generate other parameter-independent, experimentally testable hypotheses. Lastly, we leveraged this model as an in silico test bed to evaluate potential strategies for engineering cell-based therapies to overcome tumor associated immune dysfunction and thereby identified modes of immune modulation predicted to be most effective. Collectively, this work establishes a new integrated framework for investigating and modulating tumor-immune networks and provides insights into how such interactions may shape early stages of tumor formation.  相似文献   

19.
Combination of immunotherapy and chemotherapy has shown promise for cancer. Interleukin-7 (IL-7) can potentially enhance immune responses against tumor, while oxaliplatin (OXP), a platinum-based drug, can promote a favorable immune microenvironment and stimulate anticancer immune responses. We evaluated the anti-tumor activity of IL-7 combining OXP against a murine colon carcinoma in vitro and in vivo and studied the tumor immune microenvironment to investigate whether the combined treatment affects on the local immune cell populations. Utilizing lung and abdomen metastasis models by inoculation of CT26 mice colon cancer cells, we evaluated the anti-tumor efficacy of combining IL-7 and OXP in mice models. Tumor immune microenvironment was evaluated by flow cytometric analysis and immunohistochemical staining. Our study showed that the in vivo administration of IL-7 combined with OXP markedly inhibited the growth of tumors in lung and abdomen metastasis models of colon cancer. IL-7 alone had no effect on tumor growth in mice and IL-7 did not alter cell sensitivity to OXP in culture. The antitumor effect of combining IL-7 and OXP correlated with a marked increase in the number of tumor-infiltrating activated CD8+ T cells and a marked decrease in the number of regulatory T (Treg) cells in spleen. Our data suggest that OXP plus IL-7 treatment inhibits tumor cell growth by immunoregulation rather than direct cytotoxicity. Our findings justify further evaluation of combining IL-7 and chemotherapy as a novel experimental cancer therapy.  相似文献   

20.
Tumor-infiltrating lymphocytes (TIL) has been associated with improved survival in cancer patients. Within the tumor microenvironment, regulatory cells and expression of co-inhibitory immune checkpoint molecules can lead to the inactivation of TIL. Hence, there is a need to develop strategies that disrupt these negative regulators to achieve robust anti-tumor immune responses. We evaluated the blockade of immune checkpoints and their effect on T cell infiltration and function. We examined the ability of TIL to induce tumor-specific immune responses in vitro and in vivo. TIL isolated from tumor bearing mice were tumor-specific and expressed co-inhibitory immune checkpoint molecules. Administration of monoclonal antibodies against immune checkpoints led to a significant delay in tumor growth. However, anti-PD-L1 antibody treated mice had a significant increase in T cell infiltration and IFN-γ production compared to other groups. Adoptive transfer of in vitro expanded TIL from tumors of anti-PD-L1 antibody treated mice led to a significant delay in tumor growth. Blockade of co-inhibitory immune checkpoints could be an effective strategy to improve TIL infiltration and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号