首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
摘要 目的:旨在探究miR-613在胶质瘤中的表达及对细胞增殖、侵袭和血管生成的影响。方法:根据细胞转染将实验分组为对照miRNA组(Control组)、miR-613模拟物组(mimics组)和miR-613 mimics+VEGFA组(VEGFA组)。采用逆转录定量聚合酶链反应(RT-qPCR)检测胶质瘤细胞和组织中miR-613和VEGFA mRNA的表达水平;采用荧光素酶报告基因分析miR-613与血管内皮生长因子(VEGF)的关系;采用Western blotting检测VEGFA蛋白的表达水平;通过体外实验检测转染细胞的增殖能力、侵袭能力和管状形成能力。结果:与正常组织样本相比,胶质瘤I-II期组样本的肿瘤细胞呈现异形,具有深核染色,并且肿瘤细胞密度适度较低,而胶质瘤III-IV期组样本的肿瘤细胞的核分裂活跃,具有明显的微血管增殖和明显的细胞异型性;miR-613在胶质瘤I-IV期组织样本中显著降低(P<0.05)。在U87和U251细胞系的VEGFA-WT组中,与Control组相比,mimics组的荧光素酶活性显著降低(P<0.05)。与Control组相比,U87和U251细胞系中mimics组VEGFA的mRNA和蛋白表达水平均显著降低(P<0.05)。克隆形成实验、血管生成实验和细胞侵袭实验结果表明,与Control组相比,mimics组的克隆形成数量、细胞侵袭数、内皮细胞HUVEC的管状形成数和Ang-2蛋白表达水平均显著降低(P<0.05);与mimics组相比,VEGFA组克隆形成数量、细胞侵袭数、内皮细胞HUVEC的管状形成数和Ang-2蛋白表达水平均显著升高(P<0.05)。结论:miR-613通过靶向VEGFA抑制了神经胶质瘤细胞的侵袭、增殖和血管生成,提示miR-613可能成为未来治疗胶质瘤的潜在靶点。  相似文献   

3.
4.
Chronic obstructive pulmonary disease (COPD) is a leading cause of death due to tis high morbidity and mortality. microRNAs have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. In this study, we aimed to investigate the expression of microRNA-206 (miR-206) in lung tissues from COPD patients and to explore the regulatory role of miR-206 in the human pulmonary microvascular endothelial cells (HPMECs). Our results showed that cigarette smoke extract (CSE) promoted cell apoptosis, increased caspase-3 activity, and upregulated the expression of miR-206 in HPMECs, which was significantly reversed by the miR-206 knockdown. Transfection with miR-206 mimics led to cell apoptosis and was closely related to changes in the protein expression levels of caspase-3, caspase-9, and Bcl-2 in HPMECs. Further bioinformatics prediction analysis revealed that the 3′-untranslated region (3′UTR) of Notch3 and vascular endothelial growth factor-A (VEGFA) harbored miR-206-binding sites, and overexpression of miR-206 repressed the luciferase activity of the vectors containing Notch3 and VEGFA 3′UTR. Overexpression of either Notch3 or VEGFA attenuated miR-206-induced cell apoptosis in HPMECs. More importantly, miR-206 expression was upregulated in the lung tissues from COPD patients and was positively corrected with forced expiratory volume 1% predicted in COPD patients, while Notch3 and VEGFA mRNA levels were downregulated and were negatively correlated with the expression level of miR-206 in the lung tissues from COPD patients. In conclusion, our results showed that miR-206 was upregulated in COPD patients and CSE-treated HPMECs, promoted cell apoptosis via directly targeting Notch3 and VEGFA in HPMECs.  相似文献   

5.
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.  相似文献   

6.

Background & Aims

microRNAs (miRNAs) have been reported to regulate angiogenesis by down-regulating the expression of pro-angiogenic or anti-angiogenic factors. The aims of this study were to investigate whether miR-26a inhibited angiogenesis by down-regulating vascular endothelial growth factor A (VEGFA) and its clinical relevance in hepatocellular carcinoma (HCC).

Methods

The expression of miR-26a was modified in HepG2 and HCCLM3 cell lines respectively, and a panel of angiogenic factors was measured by real-time PCR in the cells. A luciferase reporter assay was used to validate the target gene of miR-26a. Specific inhibitors of signal transduction pathway and siRNA approaches were used to explore the regulatory mechanism of miR-26a. Migration and tube forming assays were conducted to show the changes of angiogenesis induced by miR-26a and its target genes. Finally animal studies were used to further validate those findings.

Results

Ectopic expression of miR-26a exhibited decreased levels of VEGFA in HepG2 cells. Migration and tube forming of human umbilical vein endothelial cells (HUVECs) were decreased in the conditioned medium from ectopic expression of miR-26a in HepG2 cells compared to control HepG2 cells. The pro-angiogenic effects of the conditioned medium of HepG2 cells on HUVECs were specifically decreased by LY294002, YC-1, and bevacizumab. Integrated analysis disclosed PIK3C2α as a downstream target gene of miR-26a. Ectopic expression of miR-26a suppressed ectopic and orthotopic tumor growth and vascularity in nude mice. The results in HCCLM3 were consistent with those in HepG2. miR-26a expression was inversely correlated with VEGFA expression in HCC patients.

Conclusions

miR-26a modulated angiogenesis of HCC through the PIK3C2α/Akt/HIF-1α/VEGFA pathway. The expression of VEGFA was inversely correlated with miR-26a expression in HCC tumors.  相似文献   

7.
8.
Increasing evidence suggests that hsa-miR-126 (miR-126) is down-regulated in non-small cell lung cancer (NSCLC) cell lines and the restoration of miR-126 impairs tumor cell proliferation, migration, invasion, and survival by targeting specific molecules. Here, we reported for the first time that miR-126 was involved in regulating the response of NSCLC cells to cancer chemotherapy. After transfected A549 cells with miR-126 mimic or inhibitor, we found that an elevated level of miR-126 was significantly associated with a decreased half maximal inhibitory concentration of adriamycin (ADM) and vincristine, an increased accumulation of ADM, down-regulation of vascular endothelial growth factor A (VEGFA) and multidrug resistance-associated protein 1 (MRP1), and inactivation of the Akt signaling pathway. Furthermore, enhanced expression of miR-126 suppressed the growth of A549 xenograft and inhibited the expression of VEGFA and MRP1. miR-126 could efficiently down-regulate VEGFA expression through the interaction with the VEGFA 3'-untranslated region, whereas restoration of VEGFA could partially attenuate the suppression of MRP1 by miR-126. However, LY294002, an inhibitor of the PI3K/Akt signaling pathway, diminished this effect, suggesting that enhanced expression of miR-126 increased the sensitivity of NSCLC cells to anticancer agents through negative regulation of a VEGF/PI3K/Akt/MRP1 signaling pathway.  相似文献   

9.
10.
The epidemiologic association between statin use and decreased risk of advanced prostate cancer suggests that statins may inhibit prostate cancer development and/or progression. Studies were performed to determine the effects of a model statin, atorvastatin (ATO), on the proliferation and differentiation of prostate cancer cells, and to identify possible mechanisms of ATO action. ATO inhibited the in vitro proliferation of both LNCaP and PC3 human prostate cancer cells in a dose- and time-dependent fashion. The greater inhibitory activity of ATO in PC3 cells was associated with induction of autophagy in that cell line, as demonstrated by increased expression of LC3-II. miR-182 was consistently upregulated by ATO in PC3 cells, but not in LNCaP cells. ATO upregulation of miR-182 in PC3 cells was p53-independent and was reversed by geranylgeraniol. Transfection of miR-182 inhibitors decreased expression of miR-182 by >98% and attenuated the antiproliferative activity of ATO. miR-182 expression in PC3 cells was also increased in response to stress induced by serum withdrawal, suggesting that miR-182 upregulation can occur due to nutritional stress. Bcl2 and p21 were identified to be potential target genes of miR-182 in PC3 cells. Bcl2 was downregulated and p21 was upregulated in PC3 cells exposed to ATO. These data suggest that miR-182 may be a stress-responsive miRNA that mediates ATO action in prostate cancer cells.  相似文献   

11.
Endothelial cells are the key components of vascular intima and play pivotal roles in vasculogenesis, angiogenesis, and tumor growth. Using Northern blot and real-time PCR, we confirmed that miR-126 and its host gene EGF-like domain 7 (EGFL7) were widely expressed in rat tissues but strictly expressed in endothelial cells. In mammals, miR-126 gene is embedded in intron7 of EGFL7. To explore the biogenesis of miR-126, plasmid EGFL7(126)-pEGFPc1 containing segment of exon7-intron7-exon8 of EGFL7 was constructed and expressed in 293T. Expression of spliced exon7-8 and excised mature miR-126 was detected by PCR and Northern blot. Knocking-down of endothelial endogenous miR-126 did not affect EGFL7 expression at mRNA or protein level. To investigate the possible roles of miR-126, PicTar, miRBase, miRanda, Bibiserv, and Targetscan were used to screen the targets. VEGFA and PIK3R2 were confirmed as the targets of miR-126 by luciferase reporter assay and Western blot. Interestingly, Northern blot and western blot showed that miR-126 was down-regulated in breast tumors where the VEGF/PI3K/AKT signaling pathway was activated. Introduction of miR-126 mimics into MCF-7 could effectively decrease VEGF/PI3K/AKT signaling activity. In summary, miR-126 was strictly expressed in endothelial cells and excised from EGFL7 pre-mRNA without affecting splicing and expression of its host gene. In addition, miR-126 could target both VEGFA and PIK3R2, and its expression was decreased in human breast cancer, implying that miR-126 may play a role in tumor genesis and growth by regulating the VEGF/PI3K/AKT signaling pathway.  相似文献   

12.
Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin’s effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin’s angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and mRNA expression in cultured HUVECs in a concentration-dependent manner. Taken together, these results suggest that scutellarin promotes angiogenesis and may form a basis for angiogenic therapy.  相似文献   

13.
14.
15.
16.
Kim CW  Son KN  Choi SY  Kim J 《FEBS letters》2006,580(18):4332-4336
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein, which plays a variety of biological processes including immunity. In this study, we demonstrate that human LF upregulates KDR/Flk-1 mRNA and protein levels in HUVECs at an optimal concentration of 5 microg/ml, which subsequently promotes the VEGF-induced proliferation and migration of the endothelial cells. Exposure of HUVECs to LF significantly increased VEGF-induced ERK MAP kinase phosphorylation. The maximal stimulation of KDR/Flk-1 expression by LF was correlated with LF-induced increase in cell proliferation and migration. These findings suggest that LF may stimulate in vivo angiogenesis via upregulation of KDR/Flk-1 expression in endothelial cells.  相似文献   

17.
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.  相似文献   

18.
Diabetic retinopathy (DR) is a leading cause of adult visual impairment and loss. This study aims to explore the effects of microRNA-9 (miR-9) on retinal neovascularization during DR by targeting the vascular endothelial growth factor A (VEGFA). DR rat models were successfully established. Retinal microvascular endothelial cells (RMECs) of DR rats were isolated and treated with miR-9 mimic, miR-9 inhibitor or small interfering RNA (siRNA)-VEGFA. The expressions of miR-9, VEGFA, and cluster of differentiation 31 (CD31) of the rats’ tissues and cells were examined. The targeting relationship between miR-9 and VEGFA was testified. The tubule formation, the cell proliferation and the periodic distribution and apoptosis were evaluated after transfection. In the retinal tissues of DR rats, miR-9 expression decreased while the expression of VEGFA and CD31 increased. Notably, miR-9 targeted and inhibited VEGFA expression. In response to the treatment of miR-9 mimic and siRNA-VEGFA, a reduction was identified in CD31 expression, tubule formation, and proliferation of RMECs and cell ratio in the S phase, but an increase was observed in apoptosis rate of RMECs. The treatment of miR-9 inhibitor reversed the manifestations. Our study demonstrated that miR-9 could inhibit retinal neovascularization of DR and tubule formation, and promote apoptosis in RMECs by targeting VEGFA.  相似文献   

19.
Pancreatic carcinoma (PC) is one of the most common and deadly human malignancies worldwide. LncRNAs play significant roles in the occurrence and development of various cancers. LncRNA SNHG11 (SNHG11) has been found to display high expression in serum of PC patients, which implies that dysregulated SNHG11 may be related to the development of PC. However, there is still a knowledge gap concerning the specific function and molecular mechanism of SNHG11 in PC. After conducting experiments with constructed models in vitro or in vivo, we found that exosomal SNHG11 promoted cell proliferation, migration, and angiogenesis but impeded cell apoptosis in PC in vitro, and additionally, it facilitated tumor growth in vivo. Exosome-mediated SNHG11 regulated the expression of VEGFA through sponging miR-324-3p. Rescue assays validated that the inhibitory effect of SNHG11 depletion on cell proliferation, migration, and angiogenesis could be reversed by miR-324-3p downregulation or VEGFA upregulation, and the promoting effect of SNHG11 silence on cell apoptosis could be rescued by transfection of miR-324-3p inhibitor or pcDNA3.1-VEGFA. To conclude, exosomal-mediated SNHG11 could regulate PC progression via miR-324-3p/VEGFA axis. Our findings may provide a novel insight for understanding PC, which might contribute to the development of potential PC biomarker.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号