首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The adaptation of the endogenous rhythm of an organism to external cycles may influence the development of physiological processes in animals. Light not only synchronizes the circadian system, but also exerts profound direct effects: the immediate reduction of melatonin release at night-time and the inhibition of locomotor activity in nocturnal rodents after a light pulse are well-known examples, yet little is known about effects of different light/dark (LD) cycles on the level of corticosterone, growth hormone and growth rate. Mice were raised under different period length of LD cycle including LD5:5 (light: 5 h; dark: 5 h), LD12:12 (light: 12 h; dark: 12 h) and LD16:16 (light: 16 h; dark: 16 h) for four weeks. Mice in LD5:5 and LD16:16 groups manifested higher locomotor activity, plasma corticosterone and growth hormone concentrations and growth rate than the LD12:12 group. The results suggest that different LD cycles may affect many physiological processes including growth rate, food intake and hormones, and the change of growth rate in different LD cycles may be related to the level of corticosterone and growth hormone concentrations. The results also suggest that both the long-period LD cycle and short-period LD cycles can improve the growth of mice, but they disturbed the biorhythm stabilization and affected hormone secretion; in general, these conditions would not promote the animals' survival.  相似文献   

2.
Administration of d-fenfluramine, a serotonin-releasing drug, to male rats induced a dose-dependent increase in both serum prolactin and corticosterone concentrations. Serum growth hormone levels increased, but not significantly, at a dose of 1.25 mg/kg i.p. and decreased significantly at higher doses. When rats were pretreated with the serotonin uptake inhibitor fluoxetine (10 mg/kg i.p.) 30 min prior to injection of d-fenfluramine (5 mg/kg i.p.), the serum prolactin response to d-fenfluramine was partially inhibited, whereas the growth hormone response was not significantly modified. Fluoxetine pretreatment increased the serum corticosterone to the same level as did d-fenfluramine. d-Fenfluramine's effect on prolactin and growth hormone release was further tested in a hypothalamic-pituitary in vitro system. The addition of d-fenfluramine (5-500 ng/mL) for 30 min to rat hypothalami resulted in an enhancement of prolactin and growth hormone-releasing activities. These were expressed as the ability of the media in which the hypothalami had been incubated to stimulate prolactin and growth hormone release by cultured pituitary cells. The data suggest that the effect of d-fenfluramine on prolactin secretion is exerted through the hypothalamus and is probably mediated, at least partially, by a serotoninergic mechanism. The mechanism of d-fenfluramine's effect on corticosterone and growth hormone release needs further evaluation.  相似文献   

3.
The metabolic clearance rate (MCR) of adrenocorticotropin (ACTH) was estimated after the intravenous infusion of graded rates of the hormone (40-2560 muU/min per 100 g body weight) in rats pretreated with chlorpromazine, morphine, and Nembutal, a preparation which proved effective in blocking endogenous ACTH release. The hormone was infused over a period of 45 min, at which time the plasma ACTH concentration had reached a steady state. A specific and sensitive bioassay, based on the corticosterone production of dispersed adrenal cells, was used to measure the plasma ACTH concentration. With increasing infusion rates of ACTH, a threefold decrease in the MCR of ACTH was observed. Previous studies of our group have shown that the MCR of corticosterone increases as a function of the infusion rate of the steroid. It appears, therefore, that the metabolism of these two hormonal links of the hypothalamo-pituitary-adrenocortical axis vary in opposite fashions as a function of the secretion rate of the hormone.  相似文献   

4.
The effects of three subcutaneous injections of 3 nmol/100 g body weight of the cholecystokinin type 2 (CCK2) receptor agonist pentagastrin on adrenocorticotrophic hormone (ACTH) and corticosterone secretion and proliferative activity of regenerating rat adrenal cortex were investigated. Pentagastrin did not alter either ACTH and corticosterone plasma concentrations or the adrenal mitotic index at day 5 of regeneration. In contrast, it increased (by about 50%) the adrenal mitotic index at day 8 of regeneration, and the effect was blocked by the simultaneous administration of equimolar doses of the CCK2-receptor antagonist PD-135,158. It is suggested that the activation of CCK2 receptors exerts a growth promoting action on the regenerating rat adrenal cortex.  相似文献   

5.
The present study is designed to investigate the role of sex and gonadal status in the growth hormone (GH) and corticosterone response to hexarelin (HEXA), a GH-releasing peptide, which also causes a stimulatory action on the hypothalamic-pituitary-adrenal (HPA) axis. HEXA (80 microg/Kg) was administered intracarotid to anesthetized intact or gonadectomized male (ORC) and female (OVX) middle-aged rats. The GH stimulatory response to HEXA was gender-related since the GH increase was significantly (p < 0.001) higher in intact males (area under the curve, AUC= 12560 +/- 1784 ng/ml.45 min) than in females (AUC= 4628 +/- 257 ng/ml.45 min). This sex difference does not depend on circulating gonadal steroids since it persists in ORC (AUC = 11980 +/- 1136 ng/ml.45 min) and OVX (AUC = 5539 +/- 614 ng/ml.45 min) rats. The different effects of HEXA on corticosterone secretion detected in male and female rats are probably dependent on the prevailing activity of the HPA axis. In fact, in male rats that have low basal corticosterone levels, HEXA caused an increase in corticosterone secretion, which was significantly (p< 0.05) higher in ORC than in intact rats. The increase in corticosterone secretion by HEXA both in intact and OVX females was delayed, probably due to the elevated initial corticosterone levels, which could have activated the glucocorticoid negative feedback. We suggest that gender-specific patterns in the regulation of the hypothalamus-pituitary function could be responsible for the GH and corticosterone sexually differentiated responses to HEXA.  相似文献   

6.
M L Adams  B Nock  R Truong  T J Cicero 《Life sciences》1992,50(6):PL35-PL40
Recent studies suggest that nitric oxide (NO) may regulate hormone biosynthesis and secretion. This was tested by treating male rats with NG-nitro-L-arginine methyl ester (NAME), a NO synthase inhibitor, and measuring serum and testicular interstitial fluid testosterone and serum corticosterone, luteinizing hormone (LH), and prolactin (PRL). The effect of NG-nitro-L-arginine (NA), a less-soluble form of the same NO synthase inhibitor, on the reproductive suppressant actions of alcohol was also examined. NAME increased testosterone and corticosterone secretion dose-dependently without affecting LH and PRL secretion. The alcohol-induced suppression of testosterone or LH secretion was not altered by treatment with NA. Although effects of NAME and NA on other systems may be involved, these results indicate that testicular and adrenal steroidogenesis are negatively regulated by endogenous NO and that NO does not regulate LH and PRL secretion or inhibit the testicular steroidogenic pathway in the same way as alcohol.  相似文献   

7.
The question of involvement of glucocorticoid hormones as temporal signals for the synchronization of the timekeeping system was addressed in rats with different corticosterone status. The authors showed that adrenalectomy had no effects on the synchronization of wheel-running activity rhythms to a steady-state LD 12:12 cycle, regardless of whether it was compensated for by a corticosterone replacement therapy that either reinstated constant plasma concentrations of the hormone or mimicked its natural rhythm. However, after a 12-h phase shift (daylight reversal), the lack of circulating corticosterone induced a significant shortening of the resynchronization rate (less than 3 days vs. 7 days). Normalization required restoration of a rhythmic corticosterone secretion that was synchronized to the new photoperiod. Under constant darkness, the corticosterone rhythm did not show any synchronizing effect, providing evidence that it participates in entrainment of the locomotor activity rhythm through modulation of light effects. It is proposed that, under stable lighting conditions, circulating glucocorticoids contribute to stabilizing activity rhythms by reinforcing resistance of the circadian timing system to variations of the photoperiod. Experimental evidence that serotonergic neurons are involved in relaying their modulatory effects to the clock is also presented.  相似文献   

8.
C Kuhn  K Albright  R Francis 《Life sciences》1991,49(19):1427-1434
Corticotropin releasing factor (CRF) both stimulates ACTH secretion from the pituitary and inhibits secretion of growth hormone (GH) in adult rats through actions in the CNS. The purpose of the present study was to evaluate these pituitary and central actions of CRF in neonatal rats, in which the hypothalamo- pituitary adrenal (HPA) axis is relatively hypo-functional. The results of this study show that central or peripheral administration of CRF evokes a marked dose-related rise in serum corticosterone in 6-day old rats. The same doses of CRF stimulate, rather than inhibit GH secretion. These results suggest that CRF has unique central actions early in ontogeny.  相似文献   

9.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

10.
D W Brann  C D Putnam  V B Mahesh 《Steroids》1991,56(2):103-111
The stimulatory and inhibitory effects of progesterone on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion were found to be dependent on the length of estrogen exposure in ovariectomized estrogen-primed rats. Progesterone suppressed LH and FSH secretion when administered 16 hours after a single injection of estradiol to ovariectomized rats. If the estradiol treatment was extended over 40 hours by two injections of estradiol 24 hours apart, progesterone administration led to a highly significant elevation of both serum LH and FSH levels 6 hours later. In addition to the direct stimulatory effect on LH and FSH release, progesterone, when injected 1 hour before, was able to antagonize the suppressive effect of a third injection of estradiol on LH and FSH release. In the immature ovariectomized estrogen-primed rat, 10 IU of ACTH brought about a release of progesterone and corticosterone 15 minutes later and LH and FSH 6 hours later. Progesterone, but not corticosterone, appeared to be responsible for the effect of ACTH on gonadotropin release. The synthetic corticosteroid triamcinolone acetonide brought about LH and FSH release in the afternoon, while cortisol, similar to corticosterone, was unable to do so. Nevertheless, triamcinolone acetonide and cortisol brought about increased secretion of FSH the following morning.  相似文献   

11.
Corticosterone, prolactin, and growth hormone responses to 5 s of handling or 3 min of novel environment were compared in rats at crest and trough of the diurnal adrenal rhythm 0, 5, 15, 30, and 60 min after stimulation. All hormones responded to stimulation, corticosterone and prolactin with a dramatic rise, and growth hormone with a precipitous fall. Resting corticosterone levels evidenced the expected diurnal variation, and prolactin but not growth hormone also showed a baseline diurnal variation of small magnitude at the times studied. Growth hormone response characteristics were unaffected by time of day or type of stimulation. Both corticosterone and prolactin response profiles differed at both times of day and following both types of stimulation. Corticosterone and prolactin levels were highly correlated and each was negatively correlated with growth hormone levels. This study confirms that hormone responses to stress are complex and depend not only on the stimulus but the context of stimulation.  相似文献   

12.
F E Wilson  B K Follett 《Life sciences》1975,17(9):1451-1456
To explore the possibility that adrenal hormones play a role in the natural termination of testicular function in chronically photo-stimulated tree sparrows, corticosterone, the principal adrenal steroid of birds, was implanted intracerebrally in photoresponsive tree sparrows 3 weeks after they were transferred to a gonadostimulatory photoregime. Three weeks later, plasmas were assayed for immunoreactive luteinizing hormone (LH), testes were weighed, and implantation sites were determined. When implanted in a region of the basal hypothalamus known to be androgen sensitive, corticosterone reduced the concentration of plasma LH and blocked testicular growth. Control implants in the optic chiasma or tracts were not gonadoinhibitory. These results confirm the potential for inhibition of gonadotropin secretion by an effect of corticosterone on the hypothalamohypophyseal axis, but the physiological significance and mechanism of corticosterone's antigonadotropic effect remain to be established.  相似文献   

13.
Adaptation to stress is indispensable to life and the hypothalamo-pituitary-adrenocortical axis is one of the major components of the adaptation. The hypothalamic component consists of corticotropin-releasing hormone and arginine vasopressin, with a questionable contribution of the latter. Vasopressin was more important in the regulation of the adrenocorticotropin secretion in the perinatal vasopressin-deficient Brattleboro rats than in adulthood, where its role depended on the nature of the stressor encountered. In adults, the vasopressin deficiency did not influence the development of chronic stress response. In the neonatal rats, the role of vasopressin was supported by the inhibitory action of a V1b antagonist and vasopressin antiserum. As the corticosterone response to stress did not follow the adrenocorticotropin levels, we assume the presence of an adrenocorticotropin independent adrenal gland regulation in the neonates. We have shown that the apparent dissociation of the corticosterone and adrenocorticotropin responses is not due to the different time course of the two hormone responses, to different level of the corticosterone binding globulin or to changes in the adrenal gland sensitivity. In vitro experiments point to the contribution of beta-adrenoceptors in the process. It was also confirmed by in vivo tests using the vasopressin-deficient Brattleboro pup as a model organism, where corticosterone levels may rise without adrenocorticotropin level changes. Another important question is the role of adrenocorticotropin beyond the corticosterone secretion regulation, which could be supposed, e.g., in cardiovascular events, immunological processes, and metabolism. We can conclude that Brattleboro rats gave us much information about the stress-axis regulation far beyond the role of vasopressin itself.  相似文献   

14.
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN's control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion.  相似文献   

15.
Corticosterone-releasing hormone (CRH) and arginine vasopressin (AVP) are crucial components of the hypothalamic-pituitary-adrenal axis that stimulates the release of adrenocorticotropic hormone from the pituitary and mediate the stress response. CRH binds to two subtypes of CRH receptors (CRH-R1 and CRH-R2) that are present in both central and peripheral tissues. We used the CRH-R1-specific antagonist, antalarmin (ANT), the CRH-R1 and CRH-R2 peptide antagonist, astressin (AST), and the CRH-R2-specific peptide antagonist, astressin2b (AST2b), to determine which CRH receptor is involved in the nicotine-stimulated secretion of corticosterone. Male C57BL/6 mice were administered ANT (20 mg/kg, i.p.), AST (0.3 mg/kg, i.p.), AST2b (0.3 mg/kg, i.p.) or vehicle prior to administration of nicotine (1.0 mg/kg, s.c.), CRH (10 μg/kg, s.c.), AVP (10 μg/kg, s.c.) or saline (s.c.), killed 15 min later and trunk blood collected and assayed for corticosterone plasma levels. We found that CRH enhanced corticosterone release, and this response was blocked by both AST and ANT. Nicotine also increased corticosterone secretion, but this effect persisted in the presence of either CRH antagonist. Furthermore, AST but not ANT or AST2b decreased corticosterone levels associated with stress of handling and injection. We also assessed the role of AVP V(1b) -specific receptor antagonist, SSR149415 alone and in combination with AST and AST2b. Although the AVP antagonist did not alter basal or nicotine-stimulated corticosterone secretion, it attenuated the AVP-induced stimulation of corticosterone and its combination with AST but not AST2b completely abolished nicotine-mediated stimulation of corticosterone secretion. Our results demonstrate that the nicotine-induced stimulation of the hypothalamic-pituitary-adrenal axis is mediated by both the CRH-R and the AVP V(1b) receptor and when the CRH receptor is blocked, nicotine may utilize the AVP V(1b) receptor to mediate secretion of corticosterone. These results argue in favor of the development of specific antagonists that block both AVP and CRH receptors to decrease the pleasurable component of nicotine, which may be mediated by corticosterone.  相似文献   

16.
H D Colby  J H Gaskin  J I Kitay 《Steroids》1974,24(5):679-686
Experiments were conducted to determine the effects of anterior pituitary hormones on hepatic corticosterone metabolism in rats. Hypophysectomy lowered A-ring reduction but did not affect sidechain metabolism. Administration of prolactin, FSH, LH or FSH + LH to hypophysectomized rats affected neither process. Similarly, ACTH or growth hormone, when given alone, did not affect corticosterone metabolism. However, combined treatment with ACTH and growth hormone significantly reduced the rate of ring A metabolism, suggesting that hormonal interactions may be important in the control of hepatic steroid metabolism.  相似文献   

17.
Recent studies have posited that the pattern of glucocorticoid secretion within an individual represents a stable, fixed physiological trait. To test this hypothesis, we assessed the repeatability of baseline and stress-induced corticosterone (CORT) secretion across developmental stages and years in Florida scrub-jays. We sampled individuals from multiple cohorts repeatedly from the age of 11 days post-hatch up to 4 years of age. We found a significant degree of repeatability within individuals in stress-induced corticosterone levels, i.e., the amount of hormone secreted during a standardized stress protocol (corrected integrated corticosterone). However, baseline corticosterone levels were not statistically repeatable, although there was some indication that nestling levels predicted levels at 1 year of age. The results of this study indicate that stress-induced CORT levels are consistent within individual scrub-jays, and the degree to which a young jay mounts an acute stress response appears to be somewhat “set” by the age of nutritional independence. Thus stress-induced corticosterone secretion appears to be a stable, repeatable trait within individuals and as such may be subject to natural selection.  相似文献   

18.
1. The production of cyclic adenosine 3':5'-monophosphate (cyclic AMP) and corticosterone isolated ratadrenal cells was increased by cholera enterotoxin. Both responses were accompanied by a lag period which is characteristic of other known actions of enterotoxin. The duration of the lag period in the production of corticosterone depended on the concentration of enterotoxin; with the maximally stimulating amounts it was 30-45 min. 2. Maximum rates of cyclic AMP and corticosterone synthesis, after the lag period, were constant for at least 1 h. Although the maximum rate of corticosterone formation was the same as that obtained adrenocorticotropic hormone, the maximum rate of cyclic AMP formation was only 8-10% of that with adrenocorticotropic hormone. 3. Pretreatment of the cells with enterotoxin ahd no effect on their subsequent steroidogenic response to maximally stimulating amounts of adrenocorticotropic hormone. 4. Cycloheximide inhibited the effect of both enterotoxin and adrenocorticotropic hormone on corticosterone production. 5. Enterotoxin stimulation of both cyclic AMP and corticosterone formation was dependent on the presence of Ca2+ in the medium although the Ca2+ requirement was not same as that for adrenocorticotropic hormone. Thus, EGTA at concentrations which completely abolished the effect of adrenocorticotropic hormone caused only a partial reduction in the effects of enterotoxin. 6. Exogenously added choleragenoid and gangliosides abolished the effects of enterotoxin without having any significant effect on the response of the cells to adrenocorticotropic hormone. 7. After treatment with neuraminidase, the adrenal cells showed an increased response to enterotoxin in terms of both cyclic AMP and corticosterone formation which was due to a combination of two effects: (a) increased rate of synthesis of both compounds and (b) shortening of the characteristic lag period. This is in sharp contrast to the results obtained with adrenocorticotropic hormone where neuraminidase-treatment made the cells less sensitive to adrenocorticotropic hormone.  相似文献   

19.
M G Cost  D R Mann 《Life sciences》1976,19(12):1929-1935
The development of the adrenal corticosterone and progesterone diurnal rhythms was retarded by a single injection of cortisol acetate, dexamethasone acetate or progesterone into 3-day-old female rats. This effect was transient with the establishment of the corticosterone rhythm by day 70. The retardation of adrenal hormone rhythmicity may alter the normal process of sexual maturation, because cortisol and dexamethasone-treated animals but not progesterone treated rats exhibited a desynchronization of the events associated with puberty. Vaginal opening was delayed, and dissociated from first ovulation in these rats. Further, neonatal cortisol administration lengthened the estrous cycle in adulthood. It can be concluded from our study that the maturation of the neural centers controlling adrenal steroid secretion may be essential for the proper timing of pubertal events in the female rat.  相似文献   

20.
Large numbers of shorebirds stop over at Delaware Bay during spring migration and undergo major mass increases within a two- to three-week period. We studied plasma levels of corticosterone and growth hormone in three species of migrants that use this site, sanderlings, Calidris alba, semipalmated plovers, Charadrius semipalmatus, and semipalmated sandpipers, Calidris pusilla. Semipalmated sandpipers were also studied at a fall migration stopover in Manomet, Massachusetts. These two hormones were chosen because they modulate the physiological processes of lipogenesis/lipolysis and promote increased feeding in birds. The stress response was not suppressed in the shorebirds studied, and plasma levels of corticosterone were elevated compared to other studies. We believe that the high levels of corticosterone relate to the rapid fat deposition that takes place at this stop-over site. There was a significant negative correlation between plasma growth hormone and body mass, indicating the lipolytic effects of the growth hormone. Because the lighter birds are recent arrivals to Delaware Bay they may have elevated plasma growth because of fat breakdown during flight to this stop-over site. High levels of growth hormone may also result in protein synthesis, replenishing tissues broken down during the previous migratory bout. J. Exp. Zool. 284:645-651, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号