首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
High level expression of a recombinant acid phytase gene in Pichia pastoris   总被引:8,自引:0,他引:8  
AIMS: To achieve high phytase yield with improved enzymatic activity in Pichia pastoris. METHODS AND RESULTS: The 1347-bp phytase gene of Aspergillus niger SK-57 was synthesized using a successive polymerase chain reaction and was altered by deleting intronic sequences, optimizing codon usage and replacing its original signal sequence with a synthetic signal peptide (designated MF4I) that is a codon-modified Saccharomyces cerevisiae mating factor alpha-prepro-leader sequence. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene promoter with the MF4I- or wild type alpha-signal sequence were used to transform Pichia pastoris. The P. pastoris strain that expressed the modified phytase gene (phyA-sh) with MF4I sequence produced 6.1 g purified phytase per litre of culture fluid, with the phytase activity of 865 U ml(-1). The expressed phytase varied in size (64, 67, 87, 110 and 120 kDa), but could be deglycosylated to produce a homogeneous 64 kDa protein. The recombinant phytase had two pH optima (pH 2.5 and pH 5.5) and an optimum temperature of 60 degrees C. CONCLUSIONS: The P. pastoris strain with the genetically engineered phytase gene produced 6.1 g l(-1) of phytase or 865 U ml(-1) phytase activity, a 14.5-fold increase compared with the P. pastoris strain with the wild type phytase gene. SIGNIFICANCE AND IMPACT OF THE STUDY: The P. pastoris strain expressing the modified phytase gene with the MF4I signal peptide showed great potential as a commercial phytase production system.  相似文献   

2.
Economical and thermostable phytase enzymes are needed to release phytate-phosphorus in plant foods for human and animal nutrition and to reduce phosphorus pollution of animal waste. Our objectives were to determine if a methylotrophic yeast, Pichia pastoris, was able to express a phytase gene (phyA) from Aspergillus niger efficiently and if suppression of glycosylation by tunicamycin affected its functional expression. The gene (1.4 kb) was inserted into an expression vector pPICZalphaA with a signal peptide alpha-factor, under the control of AOX1 promoter. The resulting plasmid was transformed into two P. pastoris strains: KM71 (methanol utilization slow) and X33 (wild-type). Both host strains produced high levels of active phytase (25-65 units/ml of medium) that were largely secreted into the medium. The expressed enzyme was cross-reacted with the polyclonal antibody raised against the wild-type enzyme and showed two pH optima, 2.5 and 5.5, and an optimal temperature at 60 degrees C. Compared with the phyA phytase overexpressed by A. niger, this phytase had identical capacity in hydrolyzing phytate-phosphorus from soybean meal and slightly better thermostability. Deglycosylation of the secreted phytase resulted in reduction in the size from 95 to 55 kDa and in thermostability by 34%. Tunicamycin (20 microg/ml of medium) resulted in significant reductions of both intracellular and extracellular phytase activity expression. Because there was no accumulation of intracellular phytase protein, the impairment did not seem to occur at the level of translocation of phytase. In conclusion, glycosylation was vital to the biosynthesis of the phyA phytase in P. pastoris and the thermostability of the expressed enzyme.  相似文献   

3.
Phytases catalyze the release of phosphate from phytic acid. Phytase-producing microorganisms were selected by culturing the soil extracts on agar plates containing phytic acid. Two hundred colonies that exhibited potential phytase activity were selected for further study. The colony showing the highest phytase activity was identified as Aspergillus niger and designated strain 113. The phytase gene from A. niger 113 (phyI1) was isolated, cloned, and characterized. The nucleotide and deduced amino acid sequence identity between phyI1 and phyA from NRRL3135 were 90% and 98%, respectively. The identity between phyI1 and phyA from SK-57 was 89% and 96%. A synthetic phytase gene, phyI1s, was synthesized by successive PCR and transformed into the yeast expression vector carrying a signal peptide that was designed and synthesized using P. pastoris biased codon. For the phytase expression and secretion, the construct was integrated into the genome of P. pastoris by homologous recombination. Over-expressing strains were selected and fermented. It was discovered that ~4.2 g phytase could be purified from one liter of culture fluid. The activity of the resulting phytase was 9.5 U/mg. Due to the heavy glycosylation, the expressed phytase varied in size (120, 95, 85, and 64 kDa), but could be deglycosylated to a homogeneous 64 kDa species. An enzymatic kinetics analysis showed that the phytase had two pH optima (pH 2.0 and pH 5.0) and an optimum temperature of 60 degrees C.  相似文献   

4.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase's activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60 degrees C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation.  相似文献   

5.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

6.
Aspergillus fumigatus phytase is a heat-stable enzyme of great potential. Our objective was to determine if a high level of functional expression of the A. fumigatus phytase gene could be produced in Pichia pastoris and how the recombinant phytase reacted to different substrates, heating conditions, and proteases. A 1.4-kb DNA fragment containing the coding region of the gene was inserted into the expression vector pPICZalphaA and expressed in P. pastoris as an active, extracellular phytase (r-Afp). The yield was 729 mg of purified protein per liter of culture, with a specific activity of 43 units/mg of protein. The enzyme r-Afp shared similar pH and temperature optima, molecular size, glycosylation extent, and specificity for p-nitrophenyl phosphate and sodium phytate to those of the same enzyme expressed in A. niger. Given 20 min of exposure to 65 to 90 degrees C, the enzyme retained 20 to 39% higher residual activity in 10 and 200 mM sodium acetate than that in sodium citrate. The enzyme seemed to be resistant to pepsin digestion, but was degraded by high levels of trypsin. In conclusion, P. pastoris is a potential host to express high levels of A. fumigatus phytase and the thermostability of the recombinant enzyme is modulated by the specificity of buffer used in the heat treatment.  相似文献   

7.
来源于Escherichia coli的高比活植酸酶基因的高效表达   总被引:14,自引:0,他引:14  
高效表达高比活植酸酶是进一步提高植酸酶发酵效价、降低植酸酶生产成本的一个有效途径。对源于Escherichiacoli的高比活植酸酶基因appA ,按照毕赤酵母 (Pichiapastoris)密码子的偏爱进行了密码子优化改造。该改造后的基因appA m按正确的阅读框架融合到毕赤酵母表达载体pPIC9上的α 因子信号肽编码序列 3′端 ,通过电击转化得到重组转化子。对重组毕赤酵母的Southernblotting分析证实植酸酶基因已整合到酵母基因组中 ,并确定了整合基因的拷贝数。Northernblotting分析证实植酸酶基因得到了正常转录。SDS PAGE分析和表达产物的研究表明 ,植酸酶得到了高效分泌表达 ,在 5L发酵罐中植酸酶蛋白表达量达到 2 5mg mL发酵液 ,酶活性 (发酵效价 )达到 7 5× 10 6 IU mL发酵液以上 ,大大高于目前报道的各种植酸酶基因工程菌株的发酵效价。  相似文献   

8.
A novel phytase with preferable characteristics from Yersinia intermedia   总被引:3,自引:0,他引:3  
A Yersinia intermedia strain producing phytase was isolated from glacier soil. The phytase gene, appA, was isolated by degenerate PCR and TAIL-PCR. The full-length fragment contained 2354bp with a 1326-bp open reading frame encoding 441 amino acids. APPA contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. To our knowledge, this is the first report of the detection of phytase activity and cloning of the relevant gene from Y. intermedia. The gene was overexpressed in Pichia pastoris, and the purified recombinant APPA had a specific activity for sodium phytate of 3960U/mg, which is higher than that of the Citrobacter braakii phytase (previously the highest specific activity known). Recombinant APPA had high activity from pH 2 to 6 (optimum 4.5) and optimal temperature of 55 degrees C; the enzyme was resistant to pepsin and trypsin. These characteristics suggest that APPA may be highly suitable for use in the feed industry.  相似文献   

9.
本实验通过PCR方法从毕赤酵母GS115-phyA中扩增出不含有信号肽及内含子的黑曲霉NRRL3135植酸酶phyA基因,并将其克隆到表达载体pINA1297中,得到表达载体pINA1297-phyA,利用醋酸锂转化法将线性化载体转化到解脂耶氏酵母po1h中,通过YNBcasa和PPB平板筛选出阳性表达菌株,阳性菌株在YM培养基中28℃培养6d后酶活达到最大为636.23U/mL。表达上清经SDS-PAGE分析得到表达植酸酶分子量约为130kDa,但通过去糖基化处理后其分子量变为51kDa,与理论值相符。经过酶学性质分析表明重组植酸酶最适pH为5.5,最适温度为55℃,该酶在pH2.0~8.0处理1h后仍有较高酶活,并且90℃处理10min后还有86.08%的残留酶活,其抵抗胃蛋白酶和胰蛋白酶能力也较强。  相似文献   

10.
A gene (Ncphy) encoding a putative phytase in Neurospora crassa was cloned and expressed in Pichia pastoris, and the biochemical properties of the recombinant protein were examined in relation to the phytic acid hydrolysis in animal feed. The recombinant phytase (rNcPhy) hydrolyzed phytic acid with a specific activity of 125 U mg-1, Km of 228 micromol L-1, Vmax of 0.31 nmol (phosphate) s-1 mg-1, a temperature optimum of 60 degrees C and a pH optimum of 5.5 and a second pH optimum of 3.5. The enzyme displayed pH stability around pH 3.5-9.5 and showed satisfactory thermostability at 80 degrees C. The phytase from N. crassa has potential for improving animal feed processing at higher temperatures.  相似文献   

11.
Phytases are enzymes that liberate inorganic phosphates from phytate. In a previous study, a beta-propeller phytase (168phyA) from Bacillus subtilis was introduced into transgenic tobacco, which resulted in certain phenotypic changes. In the study described herein, the recombinant phytase (t168phyA) was purified from transgenic tobacco to near homogeneity by a three-step purification scheme. The biochemical properties and kinetic parameters of t168phyA were compared with those of its counterpart from B. subtilis. t168phyA was glycosylated, and it showed a 4 kDa increase in molecular size in SDS-PAGE (44 kDa vs. 40 kDa). Although its thermostability remained unchanged, its temperature optimum shifted from 60 degrees C to 45-50 degrees C and its pH optimum shifted from pH 5.5 to 6.0. Kinetic data showed that the t168phyA had a lower Kcat, but a higher Km than the native enzyme. Despite these changes, t168phyA remained catalytically active and has a specific activity of 2.3 U/mg protein. These results verify the activity of recombinant Bacillus phytase that is expressed in plants.  相似文献   

12.
柠檬酸杆菌(Citrobacterbraakii)来源的植酸酶是目前报道的比活最高的植酸酶。按照毕赤酵母(Pichiapastoris)对密码子的选择偏向性,对来源于柠檬酸杆菌的高比活植酸酶基因AppA进行了密码子优化改造。改造后的基因AppA(m)按正确的阅读框架融合到毕赤酵母表达载体pPIC9的α-因子信号肽编码序列3′端,通过电击转化得到重组转化子。通过PCR验证,AppA(m)已整合在酵母染色体上。SDS-PAGE分析和表达产物的研究表明,植酸酶得到了高效分泌表达,在5L发酵罐中植酸酶蛋白表达量达到3·2mg/mL发酵液,发酵效价达到每毫升发酵液1·4×107IU以上,高于目前报道的各种植酸酶基因工程菌株的发酵效价。  相似文献   

13.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation.  相似文献   

14.
植酸酶基因的多点突变及在毕赤酵母中的高效表达   总被引:5,自引:2,他引:3  
根据毕赤酵母基因的密码子选择偏爱性,不改变其编码氨基酸序列,对来源于黑曲霉N25植酸酶phyA基因,进行了突变,构建了含有正确突变的酵母表达载体pPIC9k-phyAm-4,电击转化毕赤酵母,获得优化了密码子的重组酵母转化子。经PCR鉴定表明,植酸酶基因已整合到酵母基因组中; 表达产物的SDS-PAGE分析表明,酶蛋白分子大小为70.15KD。Southern blotting结果表明,phyA基因整合到酵母染色体DNA中;转化子酶活测定结果表明,经密码子优化的重组酵母PP-NPm-4-2酶活可达136900U/ml,比Arg没有优化的PP-NPm-8 (47600 Uoml-1)酶活高约2.8倍。  相似文献   

15.
Aspergillus fumigatus contains a heat-stable phytase of great potential. To determine whether this phytase could be expressed in plants as a functional enzyme, we introduced the phytase gene from A. fumigatus (fphyA) in tobacco (Nicotiana tabacum L. cv. NC89) by Agrobacterium-mediated transformation. Phytase expression was controlled by the cauliflower mosaic virus (CaMV) 35S promoter. Secretion of recombinant phytase (tfphyA) to the extracellular fluid was established by use of the signal sequence from tobacco calreticulin. Forty-one independent transgenic plants were generated. Single-copy line A was selected based on segregation of T1 seeds for kanamycin resistance, phytase expression and Southern blotting analysis for use in further study. After 4-weeks of plant growth, the phytase was accumulated in leaves up to 2.3% of total soluble protein. tfphyA was functional and shared similar profiles of pH, temperature and thermal stability to the same enzyme expressed in Pichia pastoris (pfphyA). The expressed enzyme had an apparent molecular mass of 63 kDa and showed maximum activity at pH 5.5, and temperature, 55 degrees C. It had a high thermostability and retained 28.7% of the initial activity even after incubation at 90 degrees C for 15 min. The above results showed that the thermostable A. fumigatus phytase could be expressed in tobacco as a functional enzyme and thus has the potential of overexpressing it in other crop plants also.  相似文献   

16.
A novel gene coding for an endo-beta-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The beta-mannanase showed an identity of 90.2-92.9% (< or =95%) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified beta- mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDITOF mass spectrometry. The recombinant beta-mannanase had an optimum temperature of 45 degrees C and optimum pH of 6.5. The enzyme was stable at temperatures up to 50 degrees C (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions (Hg2+, Pb2+, and Co2+) substantially inhibited the recombinant beta-mannanase. The chemical additives including detergents (Triton X- 100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the beta-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.  相似文献   

17.
The appA gene that was previously shown to code for an acid phosphatase instead codes for a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The purified enzyme with a molecular mass of 44,708 Da was further separated by chromatofocusing into two isoforms of identical size with isoelectric points of 6.5 and 6.3. The isoforms had identical pH optima of 4.5 and were stable at pH values from 2 to 10. The temperature optimum for both phytase isoforms was 60 degrees C. When heated at different pH values the enzyme showed the greatest thermal resistance at pH 3. The pH 6.5 isoform exhibited K(m) and Vmax values of 0.79 mM and 3165 U.mg-1 of protein for phytase activity and 5.5 mM and 712 U.mg-1 of protein for acid phosphatase, respectively. The pH 6.3 isoform exhibited slightly lower K(m) and Vmax values. The enzyme exhibited similar properties to the phytase purified by Greiner et al. (1993), except the specific activity of the enzyme was at least 3.5-fold less than that previously reported, and the N-terminal amino acid sequence was different. The Bradford assay, which was used by Greiner et al. (1993) for determination of enzyme concentration was, in our hands, underestimating protein concentration by a factor of 14. Phytase production using the T7 polymerase expression system was enhanced by selection of a mutant able to grow in a chemically defined medium with lactose as the carbon source and inducer. Using this strain in fed-batch fermentation, phytase production was increased to over 600 U.mL-1. The properties of the phytase including the low pH optimum, protease resistance, and high activity, demonstrates that the enzyme is a good candidate for industrial production as a feed enzyme.  相似文献   

18.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

19.
Syncephalastrum racemosum Cohn. produces an extracellular xylanase that was shown to potentially bleach pulp at pH 10 and 50 degrees C. The enzyme was found to be a dimer with an apparent molecular weight of 29 kDa as determined by SDS-PAGE. The optimum activity was found at two pH values 8.5 and 10.5; however the activity sharply decreased below pH 6 and above pH 10.5. The enzyme was stable for 72 h at pH 10.5 and at 50 degrees C. Kinetic experiments at 50 degrees C gave V(max) and K(m) of 1,400 U/ml min(-1) mg(-1) protein and 0.05 mg/ml respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by group II b metal ions like Zn2+, Hg2+, etc. Xylan completely protected the enzyme from being inactivated by N-bromosuccinimide.  相似文献   

20.
The effects of germination temperature on the growth of barley seedlings for phytase production were studied at 15, 20 and 25 degrees C for 6-10 days. The growth rate of the barley seedlings was increased as the germination temperature was increased. The initial rate of total protein production was closely coupled to that of the barley growth, and the rate of total protein production tended to increase as the germination temperature was increased. SDS-PAGE analysis of total protein from the barley seedlings showed time-dependent appearance and disappearance of protein bands. Although no significant phytase activity was detected at zero time of germination, a significant increase in phytase activity up to 7.9-fold occurred during the first several days of germination then decreased. Phosphate production (viz. phytate degradation) in the barley seedlings occurred rapidly at the beginning of germination. However, the rate of production continued to decrease with further germination. A time lag of about 1-2 days between the rate of total protein production and that of phytase production was observed. Unlike the extent of total protein production, that of phytase production was similar irrespective of germination temperature. Partial purification of a crude enzyme extract by hydrophobic interaction chromatography resulted in two phytase fractions (PI and PII). Zymogram analysis demonstrated that PI had two bands with molecular masses of about 66 and 123 kDa while PII had one band corresponding to a molecular mass of about 96 kDa. The optimal temperature for PI was found to be 55 degrees C, while it was 50 degrees C for PII. The enzyme fraction PI had a pH optimum at 6.0, whereas the optimum pH for PII was found to be 5.0. Addition of 0.1% (v/v) Tween 80 was found to increase enzyme activity significantly (i.e., 167% for PI and 137% for PII). Phytate in cereals including barley, rice, corn and soybean degraded effectively by the treatment of the barley phytases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号