首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 391 毫秒
1.
 Intergeneric hybrids between Brassica juncea (2n=36), B. carinata (2n=34) and Orychophragmus violaceus (2n=24) were produced when B. juncea and B. carinata cultivars were used as female parents. The hybrids between B. juncea and O. violaceus had an intermediate morphology except for petal colour and were partially fertile. The hybrids between B. carinata and O. violaceus had a matroclinous morphology and were nearly fertile. Cytological analysis of the hybrids and their progenies gave the following results. (1) In the hybrids between B. juncea and O. violaceus, the somatic tissues of the roots, leaves and styles were mixoploid (2n=12–42), and cells with 24, 30 or 36 chromosomes were the most frequent. Based on the recorded numbers and behaviour of the mitotic and meiotic chromosomes, complete and partial separation of the parental genomes was proposed to have occurred during mitosis. This resulted in the occurrence of cells with possibly complete and incomplete complements of the parental species and cells with parental complements and some additional chromosomes from the other parent. (2)  Pollen mother cells (PMCs) possibly with both parental chromosome complements, only B. juncea chromosomes or a complete B. juncea complement with additional O. violaceus chromosomes were more competitive in entering meiosis. The majority of fertile gametes were deduced to have been produced by PMCs with a B. juncea complement with or without additional O. violaceus chromosomes. (3) The progeny plants from selfed hybrids between B. juncea and O. violaceus were morphologically either of a B. juncea, hybrid or variable type. Cytologically they were grouped into six types according to the frequencies of cells with various chromosome numbers. All of the plants except 2 which constituted two types, were mixoploids, composed of cells with various chromosome numbers, mainly in a certain serial range. (4) The hybrid plants between B. carinata and O. violaceus were mixoploids with chromosome numbers in the range of 12–34, and cells with 2n=34 were the most frequent. The main categories of PMCs with 17 bivalents at metaphase I and 17 : 17 segregations at anaphase I contributed to the high fertility of the hybrids and the fact that their progeny after selfing were mainly plants with 2n=34. Somatic and meiotic separation of the parental genomes was proposed to have occurred in the hybrids between B. carinata and O. violaceus. (5) Mitotic and meiotic elimination of what could be O. violaceus chromosomes might also have contributed to the observed mitotic and meiotic cell types in the two kinds of hybrids studied. Finally, the possible mechanisms behind these cytological observations and their potential in the production of Brassica aneuploids were discussed. Received: 4 February 1997/Accepted: 29 July 1997  相似文献   

2.
Zhao ZG  Hu TT  Ge XH  Du XZ  Ding L  Li ZY 《Plant cell reports》2008,27(10):1611-1621
Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2= 38) + Orychophragmus violaceus (2= 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2= 51–67) with a range of 19–28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC1 plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC1 plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2= 41–54) with 9–16 chromosomes from O. violaceus. BC2 plants showed segregations for female fertility, leaf shape and still some chromosome variation (2= 39–43) with 2–5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC2 plants, monosomic addition lines (2= 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. Z. Zhao and T. Hu make equal contributions to this work.  相似文献   

3.
Gene flow from transgenic plants to compatible wild relatives is one of the major impediments to the development of the culture of genetically engineered crop plants. In this work, the flow of EPSPS (conferring resistance to glyphosate) gene of transgene Brassica napus toward the untransgene B. napus and wild relative species Orychophragmus violaceus in an open field (1 ha) was studied. The data related to only the 2004 and 2005 autumn season on one location of southwest of China. Pollen dispersal and fertilization of the target plants were favored and a detailed analysis of the hybrid offspring was performed. In field, the data studied show that the gene flow frequency was 0.16% between GM and non-GM B. napus at a distance of 1 m from the transgenic donor area. The crosspollination frequency was 0.05% between GM and non-GM B. napus at a distance of 5 m from the transgenic donor area. At a distance of 10 m, no crosspollination was observed. According to the results of this study, B. napus transgene flow was low. However, the wild relative species O. violaceus could not be fertilized by the transgenic pollen of B. napus, no matter what the distance was.  相似文献   

4.
Summary Intergeneric hybrids were produced between Diplotaxis siettiana and Brassica campestris through embryo rescue. The hybrids were completely pollen sterile and backcrosses with pollen of B. campestris did not yield any seeds. Induction of colchiploidy restored pollen fertility and backcross pollinations yielded viable seeds. Cytological details of the hybrid, amphidiploid and backcross progenies were studied. Both pollen-sterile and pollen-fertile plants have been obtained in backcross 2 progeny. This hybrid (D. siettiana x B. campestris) was used as a bridge cross to transfer the cytoplasm of D. Siettiana to two other incompatible cultivars of BrassicaB. juncea and B. napus. Pollinations of the amphidiploid (D. siettiana x B. campestris, 2n = 36) with pollen of B. juncea/B. napus readily produced seeds without embryo rescue. These hybrids were grown to flowering and their cytological details were studied. Seeds have been produced from backcross pollinations of both these hybrids with the pollen of the respective cultivars. The results clearly show the feasibility of producing alloplasmic lines in all the three oilseed brassicas.  相似文献   

5.
Ma N  Li ZY  Cartagena JA  Fukui K 《Plant cell reports》2006,25(10):1089-1093
New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (∼70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro × Orychophragmus violaceus F5 hybrid plant (2n=31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n=38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus–specific bands, deleted bands in ‘Oro’ and novel bands for two parents were detected. The possible mechanisms for these results were discussed.  相似文献   

6.
It has been proposed that both complete and partial separation of the parental genomes during mitosis and meiosis occurs in the intergeneric hybrids between Orychophragmus violaceus (2n=24) and the three cultivated Brassica tetraploids (B. napus, B. carinata and B. juncea). The hypothesis has been that this and the variations in chromosome numbers of these hybrids and their progenies result from the different roles of the A, B and C genomes originating from Brassica. To test this hypothesis, we produced hybrids between O. violaceus and the cultivated Brassica diploids. The hybrids with B. oleracea (2n=18, CC) had an intermediate morphology, but their petals were purple like those of O. violaceus. They were sterile and had the expected chromosome number (2n=21) in their mitotic and meiotic cells. The hybrid with B. campestris (2n=20, AA) was morphologically intermediate, except for its partial fertility and its yellow petals, which were similar to those of B. campestris. It was mixoploid (2n=23–42), and cells with 2n=34 were most frequent. Partial separation of parental genomes during mitosis, leading to the addition of O. violaceus chromosomes to the B. campestris complement, was proposed to explain the findings in the mitotic and meiotic cells of the hybrid and its progeny. In crosses with B. nigra (2n=16, BB), the majority of the F1 plants were of the maternal type (2n=16), a small fraction had B. nigra morphology but were mixoploids (2n=16–18), predominantly with 2n=16 cells and three plants, each with a specific morphology, were mixoploids consisting of cells with varying ranges of chromosome numbers (2n=17–26, 11–17 and 14–17). The origin of these different types of plants was inferred to be a result of the complete and partial separation of parental genomes and the loss of O. violaceus chromosomes. Our findings in the three crosses suggest that the A genome was more influential than the C genome with respect to complete genome separation during mitosis and meiosis of the hybrids with B. napus. Possible complete and partial genome separation during mitotic divisions of the hybrids with B. carinata was mainly attributed to the role of the B genome. The combined roles of the A and B genomes would thus contribute to the most variable chromosome numbers of mitotic and meiotic cells in the hybrids with B. juncea and their progenies. The possible cytological mechanisms pertaining to these hybrids and the potential of genome separation in the production of Brassica aneuploids and homozygous plants are discussed. Received: 8 February 1998 / Accepted: 12 March 1999  相似文献   

7.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

8.
Many novel lines were established from an intergeneric mixoploid between Brassica rapa (2n = 20) and Orychophragmus violaceus (2n = 24) through successive selections for fertility and viability. Pedigrees of individual F2 plants were advanced to the 10th generation by selfing. Their breeding habit was self-compatible and different from the self-incompatibility of their female parent B. rapa, and these lines were reproductively isolated to different degrees from B. rapa and B. napus. The lines with high productivity showed not only a wide spectrum of phenotypes but also obvious variations in fatty acid profiles of seed oil and glucosinolate contents in seed meal. These lines had 2n = 36, 37, 38, 39 and 40, with 2n = 38 being most frequent (64.56%), and no intact O. violaceus chromosomes were detected by genomic in situ hybridization (GISH) analysis. Amplified fragment length polymorphism (AFLP) analyses revealed a high extent of variation in genomic compositions across all the lines. O. violaceus-specific bands, deleted bands in B. rapa and novel bands for two parents were detected in these lines, with novel bands being the most frequent. The morphological and genetic divergence of these novel types derived from a single hybrid is probably due to rapid chromosomal evolution and introgression, and provides new genetic resources for rapeseed breeding.  相似文献   

9.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

10.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号