首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic embryogenesis from mature leaves of rose (Rosa sp.)   总被引:9,自引:0,他引:9  
Several plant growth regulators (0.3–53.3 μm 6-benzyladenine, 2,4-dichlorophenoxyacetic acid, gibberellic acid, 3-indoleacetic acid, p-chlorophenoxyacetic acid, kinetin and α-naphthylacetic acid), alone or in combination, and culture conditions were tested for their capacity to induce somatic embryogenesis from mature leaf and stem explants of rose (Rosa sp.) of four commercial rose cultivars (Baccara, Mercedes, Ronto and Soraya). Somatic embryos were only induced from mature leaf explants derived from Soraya on Murashige and Skoog (MS) medium supplemented with 53.5 μm p-chlorophenoxyacetic acid and 4.6 μm kinetin, although satisfactory callus induction rates were obtained from all cultivars. After subculturing on the same medium, embryos at various developmental stages (globular, heart and torpedo shaped) were transferred for maturation onto a MS medium supplemented with 5.2 μm 6-benzyladenine and 5.7 μm 3-indoleacetic acid. Germination of mature embryos took place after subculturing them onto medium of the same composition. Plantlets regenerated from embryos and bearing three to four leaves were transferred to a greenhouse. Received: 4 February 1997 / Revision received: 28 August 1997 / Accepted: 1 October 1997  相似文献   

2.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

3.
In vitro regeneration through somatic embryogenesis as well as organogenesis using cotyledon of a woody medicinal legume, Cassia angustifolia is reported. The cotyledons dissected from semi-mature seeds, if inoculated on Murashige and Skoog’s medium (MS) supplemented with auxin alone or in combination with cytokinin, produced direct and indirect somatic embryos. A maximum of 14.36 ± 2.26 somatic embryos per 20 mg of explants including callus were produced in 70% cultures on MS medium with 2.5 μM benzyladenine (BA) + 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Although the percentage of embryogenic cultures was higher (83.33%) at 10 μM 2,4-D + 1 μM BA, the average number of somatic embryos was much less (7.6 ± 0.85) at this level, whereas at 2.5 μM BA and 5 μM 2,4-D, there was a simultaneous formation of both somatic embryos and shoots. The somatic embryos, although started germinating on the same medium, developed into full plantlets only if transferred to MS basal with 2% sucrose. Cytokinins alone did not induce somatic embryogenesis, but formed multiple shoots. Five micromolar BA proved optimum for recurrently inducing shoots in the competent callus with a maximum average of 12.04 ± 2.10 shoots and shoot length of 2.26 ± 0.03 cm. Nearly 91.6% shoots (2–2.5 cm in size) organized an average of 5.12 ± 0.58 roots on half strength MS + 10 μM indole-3-butyric acid. All the plantlets have been transferred successfully to soil. Types of auxin and its interaction with cytokinin significantly influenced somatic embryogenesis.  相似文献   

4.
Somatic embryogenesis from cultures of shoot apices, cotyledon and young leaves of in vitro shoots of Agave vera-cruz Mill. was studied. Embryogenic callus was obtained when explants were cultured on Murashige and Skoog’s (MS) medium (1962) supplemented with L2 vitamins, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-d) or 5.37 μM ∝-naphthalene acetic acid (NAA). Somatic embryos differentiated from this embryogenic callus upon subculture to maturation/conversion medium containing cytokinin either alone or with auxin and l-glutamine. The best combination of growth regulators for development of somatic embryos was found to be 5.37 μM naphthalene acetic acid plus 0.91 μM zeatin and 40 g/l sucrose. The conversion frequency of somatic embryos to plantlets varied from 46–50%. Rooted plantlets were transferred directly to pots containing a soil, sand, and manure mixture without any hardening phase with 96–98% survival of the plantlets. Based on the histological observations, the potential origin of the somatic embryo is discussed.  相似文献   

5.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

6.
Efficient plant regeneration via somatic embryogenesis has been developed in pigeonpea. Cotyledon and leaf explants from 10-day-old seedlings produced embryogenic callus and somatic embryos when cultured on Murashige and Skoog (MS) medium supplemented with 10 μm thidiazuron (TDZ). Subsequent withdrawal of TDZ from the induction medium resulted in the maturation and growth of the embryos into plantlets on MS basal medium. The rooted plantlets were transferred and acclimatized on vermiculite where they showed normal morphological characters. Received: 23 December 1996 / Revision received: 22 July 1997 / Accepted: 2 August 1997  相似文献   

7.
The effect of explant age, plant growth regulators and culture conditions on somatic embryogenesis and rosmarinic acid production from leaf explants of Salvia officinalis and S. fruticosa plants collected in Greece was investigated. Embryogenic callus with numerous spherical somatic embryos could be induced on explants derived from both species and cultured for 3 weeks on a Murashige and Skoog (MS) medium supplemented with 1.8–18 μm 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (Kin) or 10.5–21 μm 1-naphthalenacetic acid and 6-benzyladenine. Only explants from young plants (with six to eight leaves) responded to the culture treatments and, in general, low light intensities (50 μmol m–2 s–1) favoured callus formation and induction of somatic embryos. Somatic embryos were further developed on the same medium. Heart- and torpedo-shaped embryos (1–2 mm long) were subcultured on a growth-regulator-free MS medium for maturation. Maximum rosmarinic acid accumulation in S. officinalis and S. fruticosa callus cultured on 4.5 μm 2,4-D and 4.5 μm Kin was 25.9 and 29.0 g/l, respectively. Received: 17 January 1997 / Revision received: 26 May 1997 / Accepted: 30 June 1997  相似文献   

8.
A protocol has been developed for the induction of somatic embryogenesis from flower explants of chamomile (Chamomilla recutita L.). The effects of several plant growth regulators [α-naphthylacetic acid (NAA), 2,4-dichlorophenoxyacetic acid, 6-benzyladenine (BA) and kinetin (Kin), alone or in combination] and the flower type (disk or ray flower) were investigated. Both types of flowers responded to the callus and shoot induction treatments, but formation of globular somatic embryos took place only on disk-flower-derived explants after 2–4 weeks of culture on a Murashige and Skoog (MS) medium supplemented either with 8.87 μm BA and 1.07 μm NAA or with 26.8 μm NAA and 11.5 μm Kin. However, fully developed, cotyledonary-stage somatic embryos could be induced only on the NAA/Kin medium, 10 weeks after culture initiation. Germination of the embryos and plant regeneration took place after subculture for 4–5 weeks onto medium of the same composition. Plantlets regenerated from embryos flowered in vitro on a MS medium supplemented with 8.87 μm BA and 1.07 μm NAA. The significance of the results with respect to chamomile micropropagation and the utilization of wild populations in breeding programs is discussed. Received: 6 April 1998 / Revision received: 12 October 1998 / Accepted: 28 October 1998  相似文献   

9.
Chapman A  Blervacq AS  Vasseur J  Hilbert JL 《Planta》2000,211(3):305-314
 Direct somatic embryogenesis was induced in root tissues of the Cichorium hybrid `474' (C. intybus L. var. sativum×C. endivia L. var. latifolia). Addition of β-d-glucosyl Yariv reagent (βGlcY), a synthetic phenylglycoside that specifically binds arabinogalactan-proteins (AGPs), to the culture medium blocked somatic embryogenesis in a concentration-dependent manner with complete inhibition of induction occurring at 250 μM βGlcY. The AGP-unreactive α-d-galactosyl Yariv reagent had no biological activity in this system. Upon transfer of 250 μM βGlcY-treated roots to control conditions, somatic embryogenesis was recovered with a time course similar to that of control roots. The βGlcY penetrated roots and bound abundantly to developing somatic embryos, to the root epidermis and the stele. Immunofluorescence and immunogold labelling using monoclonal antibodies (JIM13, JIM16 and LM2) revealed that AGPs were localised in the outer cell walls peripheral cells of the globular embryo. A spatio-temporal expression of AGPs appeared to be associated with differentiation events in the somatic embryo during the transition from the globular stage to the torpedo stage. To verify βGlcY specificity, molecules that bound βGlcY were extracted from treated conditioned medium and identified as AGPs by using the same monoclonal antibodies. In addition, AGPs were found to be abundantly present in the medium during embryogenic culture. All of these results establish the implication of AGPs in embryo development, and their putative role in somatic embryogenesis is discussed. Received: 26 August 1999 / Accepted: 28 January 2000  相似文献   

10.
Summary A new protocol has been developed for the highly efficient somatic embryogenesis and plant regeneration of 10 recalcitrant Chinese cotton cultivars. Calluses and embryogenic calluses were induced on MSB1 medium containing the optimal combination of indolebutyric acid (IBA; 2.46 μM) and kinetin (KT; 2.32 μM). Up to 86.7% of embryogenic calluses differentiated into globular somatic embryos 2 mo. after culture on MSB2 medium containing double KNO3 and free of growth regultors. Up to 38.3% of the somatic embryos were converted into complete plants in 8 wk on MSB3 medium with l-asparagine (Asn)/l-glutamine (Gln) (7.6/13.6 mM). The plants were successfully transferred to soil and grew to maturity. With the protocol described here, we have obtained hundreds of regenerating plantlets from 10 recalcitrant cultivars, which is important for the application of tissue culture to cotton breeding and biotechnology.  相似文献   

11.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

12.
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.  相似文献   

13.
Summary Somatic embryos could be induced from embryogenic callus originating from mesocotyl as well as leaf-base segments of Paspalum scrobiculatum on Murashige and Skoog (MS) or Chu et al. (N6) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9.0, 18.0, and 22.5 μM). N6 medium was better than MS, for both explants, for high-frequency somatic embryogenesis. Also, mesocotyl tissues were relatively more totipotent than leaf-base segments. The somatic embryos ‘germinated’ and formed plantlets on transfer of embryogenic calluses to hormone-free MS or N6 regeneration medium. Embryogenic cultures could be maintained on low hormone medium which readily regenerated to form plantlets on hormone-free medium. A higher frequency of plantlet formation occurred on MS than on N6 medium. In vitro-formed plantlets were gradually acclimatized in the culture room and on transfer to soil flowered and set seed. Somatic embryogenesis and plantlet regeneration from mesocotyl and leaf-base segments are potentially simpler systems than regeneration from ‘embryonic’ explants such as immature embryos and unemerged inflorescences.  相似文献   

14.
Capsicum chinense is recalcitrant in in vitro morphogenesis. No efficient, reproducible somatic embryogenesis regeneration system exists for this species, impeding regeneration from transformed cells. An indirect somatic embryogenesis protocol is developed using mature C. chinense zygotic embryo segments (ZES). The ZES cultured in semi-solid Murashige-Skoog (MS) medium supplemented with 8.9 μM naphthaleneacetic acid, 11.4 μM indoleacetic acid and 8.9 μM 6-benzylaminopurine, developed an embryogenic callus and 8% of the calli developed somatic embryos. Torpedo-stage somatic embryos were detached from the callus and subcultured in semi-solid MS medium without growth regulators, producing a 75% conversion rate to plantlets with well-formed root tissue. Histological analysis showed the developed structures to have no vascular connection with the callus and to be bipolar, confirming that this protocol induced formation of viable somatic embryos from mature C. chinense ZES. All acclimated plantlets survived under greenhouse conditions. This protocol will facilitate regeneration of genetically transformed plants using either biolistics or Agrobacterium tumefaciens approach.  相似文献   

15.
Nodal explants from selected trees of gum karaya (Sterculia urens Roxb.) in the adult growth phase cultured on Murashige and Skoog (MS) medium supplemented with 6.62 μm N6-benzylaminopurine (BAP) produced an average of six adventitious shoots in 30 days. Shoots were rooted in vitro on 1/4-strength MS medium containing 9.82 μm indole-3-butyric acid. Nodulated callus was produced from hypocotyl explants cultured on MS medium supplemented with 4.52 μm 2,4-dichlorophenoxyacetic acid and 8.90 μm BAP. Somatic embryos developed when the nodulated callus was transferred to MS medium containing 0.45 μm thidiazuron (TDZ). TDZ treatment for 2 days gave the optimum response. Over 30% of the somatic embryos developed into plantlets when transferred to 1/4-strength MS basal medium without any growth regulators. Plantlets produced from adventitious shoots and somatic embryos were acclimatized to ex vitro conditions and established in the field. Received: 26 November 1997 / Revision received: 14 April 1998 / Accepted: 11 May 1998  相似文献   

16.
The Mucuna pruriens Linn. is an important medicinal legume cover crop. Almost all the parts of the plant are reported to contain l-3,4-dihydroxy phenylalanine (l-DOPA), a non-protein amino acid that acts as precursor for the neurotransmitter dopamine. Here we report a rapid and reliable protocol for high fidelity regeneration of M. pruriens plants via somatic embryogenesis. Embryogenic callus was induced from cotyledon segments of in vitro grown seedlings on Murashige and Skoog medium supplemented with 6.7 μM 2,4-dichlorophenoxy-acetic acid (2,4-D). High-frequency somatic embryogenesis was achieved after transfer of embryogenic callus clumps to MS medium supplemented with 2.3 μM Kinetin (Kn) and 5.4 mM α-naphthaleneacetic acid (NAA) supplemented with 13.6 μM adenine sulphate. The maximum number of cotyledonary-stage embryos (60.5 ± 12.7) was obtained after 10 weeks. Mature somatic embryos were converted to plantlets on half strength MS basal medium with 90% survival rate in the field condition. The whole process required 12–16 weeks of culture for completion of all steps of plant regeneration. The protocol should provide an efficient means for large-scale cultivation and in vitro manipulation of M. pruriens, an important green manure cover-crop with medicinal properties.  相似文献   

17.
Summary A protocol of somatic embryogenesis and plant regeneration from petiole segments of Parthenocissus tricuspidata Planch. has been developed. Embryogenic tissue was induced on B5 (Gamborg) basal medium supplemented with 2.25–9.0 μM 2,4-dichlorophenoxyacetic acid, 500 mg l−1 casein hydrolysate (CH), and 0.1 gl−1 activated charcoal. Somatic embryos were induced on B5 medium containing various concentrations of benzyladenine (BA) (4.44, 6.66, and 8.88 μM) and α-naphthaleneacetic acid (NAA) (0, 0.54, and 1.61 μM) plus 500 mg l−1 CH. Ninety percent of normal somatic embryos were converted into plantlets directly on Murashige and Skoog (MS) medium free of plant growth regulators. Shoots could be induced from abnormal somatic embryos on MS medium containing 4.44 μM BA, 0.05 μM NAA, and 500 mg l−1 CH. Genotypic differences were found in the process of somatic embryogenesis and plant regeneration. Histological analysis confirmed the process of somatic embryogenesis. Regenerated plantlets with well-developed roots were successfully acclimatized in greenhouse and all plants showed normal morphological characteristics.  相似文献   

18.
Summary A highly reproducible method for regeneration of Coffea arabica and C. canephora plants via direct somatic embryogenesis from cultured leaf and stem segments of regenerated plants was developed. Embryogenesis was influenced by the presence of triacontanol (TRIA) in the medium. TRIA incorporated at 4.55 and 11.38 μM in half-strength MS basal medium containing 1.1 μM 6-benzyladenine (BA) and 2.28 μM indole-3-acetic acid (IAA) induced direct somatic embryogenesis in both species. A maximum of 260±31.8 and 59.2±12.8 somatic embryos per culture were induced from in vitro leaf explants of C. arabica and C. canephora, respectively. TRIA also induced embryo formation from in vitro stem segment callus tissues along with multiplication of primary embryos into secondary embryos. By using TRIA, it was possible to obtain somatic embryogenesis in C. arabica and C. canephora.  相似文献   

19.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号