首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1.  相似文献   

2.
3.
Feng H  Liu H  Kong R  Wang L  Wang Y  Hu W  Guo Q 《Fish & shellfish immunology》2011,30(4-5):1159-1169
The cytoplasmic helicase protein RIG-I (retinoic acid-inducible gene I) and downstream signaling molecules, MAVS (mitochondrial antiviral signaling protein), TRAF3 (TNF-receptor-associated factor 3) and TBK1 (TANK-binding kinase 1), have significant roles in the recognition of cytoplasmic 5'-triphosphate ssRNA and short dsRNA, and phosphorylation of IRF-3 (interferon regulatory factor 3) and IRF-7 which is responsible for the induction of type I interferons (IFN). In the present study, the full-length cDNAs of RIG-I, MAVS, TRAF3 and TBK1 were cloned and identified in common carp (Cyprinus carpio L.). The deduced protein of carp RIG-I is of 946 aa (amino acids), consisting of two CARDs (caspase-recruitment domain), a DEXDc (DExD/H box-containing domain), a HELICc (helicase superfamily c-terminal domain) and a RD (regulatory domain). Carp MAVS is of 585 aa, containing a CARD, a proline-rich region and a TM (transmembrane domain). Carp TRAF3 encodes a protein of 573 aa, including a RING (really interesting new gene), two TRAF-type zinc fingers, a coiled coil and a MATH-TRAF3 (meprin and TRAF homology) domain. Carp TBK1 is of 727 aa and contains a S_TKc domain (Serine/Threonine protein kinases, catalytic domain). Carp RIG-I, MAVS, TRAF3 and TBK1 mRNAs are ubiquitously expressed in all tissues examined. In response to SVCV infection, carp RIG-I and MAVS mRNAs were up-regulated at different levels in spleen, head kidney and intestine tissues at different time points. Similarly, both carp IRF-3 and IRF-7 mRNAs were significantly up-regulated in the detected tissues. Especially in intestine, the IRF-3 and IRF-7 mRNAs of carp increased and reached 25.3-fold (at 3 dpi) and 224.7-fold (at 5 dpi). Noteworthily, a significant growth of carp TRAF3 and TBK1 mRNA was also mainly found in intestine (7.0-fold and 11.3-fold at 5 dpi, respectively). These data implied that the expression profiles of IRF-3/-7 mRNAs in carp correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK, and carp RIG-I and MAVS may be involved in antiviral responses through the RIG-I viral recognition signaling pathway in a TRAF3/TBK1-dependent manner.  相似文献   

4.
5.
6.
The RIG-I/Mda5 sensors recognize viral intracellular RNA and trigger host antiviral responses. RIG-I signals through the adaptor protein MAVS, which engages various TRAF family members and results in type I interferon (IFNs) and proinflammatory cytokine production via activation of IRFs and NF-κB, respectively. Both the IRF and NF-κB pathways also require the adaptor protein NEMO. We determined that the RIG-I pathway is differentially regulated by the linear ubiquitin assembly complex (LUBAC), which consists of the E3 ligases HOIL-1L, HOIP, and the accessory protein SHARPIN. LUBAC downregulated virus-mediated IFN induction by targeting NEMO for linear ubiquitination. Linear ubiquitinated NEMO associated with TRAF3 and disrupted the MAVS-TRAF3 complex, which inhibited IFN activation while stimulating NF-κB-dependent signaling. In SHARPIN-deficient MEFs, vesicular stomatitis virus replication was decreased due to increased IFN production. Linear ubiquitination thus switches NEMO from a positive to a negative regulator of RIG-I signaling, resulting in an attenuated IFN response.  相似文献   

7.
RLR[retinoic acid-inducible gene Ⅰ(RIG-Ⅰ)-like Receptors]是一类表达在胞浆中的模式识别受体, 在识别细胞质中经病毒复制产生的病毒RNA后, 启动一系列信号级联反应, 以诱导机体Ⅰ型干扰素及干扰素诱导的抗病毒基因的表达, 最后达到清除机体病毒感染的目的。由于在病毒感染时机体干扰素反应必须迅速启动, 当病毒清除后干扰素反应又需要立即恢复到正常本底水平, 因此RLR激活的信号转导途径受到了严格的调控, 其中就包括由E3泛素连接酶参与的泛素化修饰调控和由去泛素化酶参与的去泛素化修饰调控。自2003年成功鉴定出鱼类干扰素基因以来, 鱼类也被发现具有保守的RLR信号转导途径诱导干扰素抗病毒免疫反应, 该信号途径同样受到泛素化修饰的调控。文章总结了近年来泛素化修饰在哺乳类和鱼类RLR介导的抗病毒免疫应答通路中的调节机制。  相似文献   

8.
In this study, we found that infection with flaviviruses, such as Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2), leads to interferon-beta (IFN-beta) gene expression in a virus-replication- and de novo protein-synthesis-dependent manner. NF-kappaB activation is essential for IFN-beta induction in JEV- and DEN-2-infected cells. However, these two viruses seem to preferentially target different members of the interferon regulatory factor (IRF) family. The activation of constitutively expressed IRF-3, characterized by slower gel mobility, dimer formation, and nuclear translocation, is more evident in JEV-infected cells. Other members of the IRF family, such as IRF-1 and IRF-7 are also induced by DEN-2, but not by JEV infection. The upstream molecules responsible for IRF-3 and NF-kappaB activation were further studied. Evidently, a cellular RNA helicase, retinoic acid-inducible gene I (RIG-I), and a cellular kinase, phosphatidylinositol-3 kinase (PI3K), are required for flavivirus-induced IRF-3 and NF-kappaB activation, respectively. Therefore, we suggest that JEV and DEN-2 initiate the host innate immune response through a molecular mechanism involving RIG-I/IRF-3 and PI3K/NF-kappaB signaling pathways.  相似文献   

9.
10.
In studying biological roles of interferon regulatory factor (IRF)-1 tumor suppressor in cervical carcinogenesis, we found that HPV E7 is functionally associated with IRF-1. Binding assays indicate a physical interaction between IRF-1 and HPV E7 in vivo and in vitro. The carboxyl-terminal transactivation domain of IRF-1 was required for the interaction. Transient co-expression of E7 significantly inhibits the IRF-1-mediated activation of IFN-beta promoter in NIH-3T3 cells. Co-transfection of E7 mutants reveals that the pRb-binding portion of E7 is necessary for the E7-mediated inactivation of IRF-1. It was next determined whether histone deacetylase (HDAC) is involved in the inactivation mechanism as recently suggested, where the carboxyl-terminal zinc finger domain of E7 associates with NURD complex containing HDAC. When trichostatin A, an inhibitor of HDAC, was treated, the repressing activity of E7 was released in a dose-dependent manner. Furthermore, the mutation of zinc finger abrogates such activity without effect on the interaction with IRF-1. These results suggest that HPV E7 interferes with the transactivation function of IRF-1 by recruiting HDAC to the promoter. The immune-promoting role of IRF-1 evokes the idea that our novel finding might be important for the elucidation of the E7-mediated immune evading mechanism that is frequently found in cervical cancer.  相似文献   

11.
Virus infection induces a rapid cellular response in cells characterized by the induction of interferon. While interferon itself does not induce an antiviral response, it activates a number of interferon-stimulated genes that collectively function to inhibit virus replication and spread. Previously, we and others reported that herpes simplex virus type 1 (HSV-1) induces an interferon -independent antiviral response in the absence of virus replication. Here, we report that the HSV-1 proteins ICP0 and vhs function in concert to disable the host antiviral response. In particular, we show that ICP0 blocks interferon regulatory factor IRF3- and IRF7-mediated activation of interferon-stimulated genes and that the RING finger domain of ICP0 is essential for this activity. Furthermore, we demonstrate that HSV-1 modifies the IRF3 pathway in a manner different from that of the small RNA viruses most commonly studied.  相似文献   

12.
13.
14.
Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.  相似文献   

15.
16.
17.
The rapid induction of type I interferon (IFN) is essential for establishing innate antiviral responses. During infection, cytoplasmic viral RNA is sensed by two DExD/H box RNA helicases, RIG-I and MDA5, ultimately driving IFN production. Here, we demonstrate that purified genomic RNA from HIV-1 induces a RIG-I-dependent type I IFN response. Both the dimeric and monomeric forms of HIV-1 were sensed by RIG-I, but not MDA5, with monomeric RNA, usually found in defective HIV-1 particles, acting as a better inducer of IFN than dimeric RNA. However, despite the presence of HIV-1 RNA in the de novo infection of monocyte-derived macrophages, HIV-1 replication did not lead to a substantial induction of IFN signaling. We demonstrate the existence of an evasion mechanism based on the inhibition of the RIG-I sensor through the action of the HIV-1 protease (PR). Indeed, the ectopic expression of PR resulted in the inhibition of IFN regulatory factor 3 (IRF-3) phosphorylation and decreased expression of IFN and interferon-stimulated genes. A downregulation of cytoplasmic RIG-I levels occurred in cells undergoing a single-cycle infection with wild-type provirus BH10 but not in cells transfected with a protease-deficient provirus, BH10-PR(-). Cellular fractionation and confocal microscopy studies revealed that RIG-I translocated from the cytosol to an insoluble fraction during the de novo HIV-1 infection of monocyte-derived macrophages, in the presence of PR. The loss of cytoplasmic RIG-I was prevented by the lysosomal inhibitor E64, suggesting that PR targets RIG-I to the lysosomes. This study reveals a novel PR-dependent mechanism employed by HIV-1 to counteract the early IFN response to viral RNA in infected cells.  相似文献   

18.
19.
20.
Dansako H  Ikeda M  Kato N 《The FEBS journal》2007,274(16):4161-4176
Toll-like receptors and RNA helicase family members [retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene-5 (MDA5)] play important roles in the induction of interferon-beta as a major event in innate immune responses after virus infection. TRIF (adaptor protein of Toll-like receptor 3)-mediated and Cardif (adaptor protein of RIG-I or MDA5)-mediated signaling pathways contribute rapid induction of interferon-beta through the activation of interferon regulatory factor-3 (IRF-3). Previously, it has been reported that the hepatitis C virus NS3-4A serine protease blocks virus-induced activation of IRF-3 in the human hepatoma cell line HuH-7, and that NS3-4A cleaves TRIF and Cardif molecules, resulting in the interruption of antiviral signaling pathways. On the other hand, it has recently been reported that non-neoplastic human hepatocyte PH5CH8 cells retain robust TRIF- and Cardif-mediated pathways, unlike HuH-7 cells, which lack a TRIF-mediated pathway. In the present study, we further investigated the effect of NS3-4A on antiviral signaling pathways. Although we confirmed that PH5CH8 cells were much more effective than HuH-7 cells for the induction of interferon-beta, we obtained the unexpected result that NS3-4A could not suppress the interferon-beta production induced by the TRIF-mediated pathway, although it suppressed the Cardif-mediated pathway by cleaving Cardif at the Cys508 residue. Using PH5CH8, HeLa, and HuH-7-derived cells, we further showed that NS3-4A could not cleave TRIF, in disagreement with a previous report describing the cleavage of TRIF by NS3-4A. Taken together, our findings suggest that the blocking of the interferon production by NS3-4A is not sufficient in HCV-infected hepatocyte cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号