首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum levels of the acute-phase reactant, C-reactive protein (CRP), increase dramatically during acute inflammatory episodes. CRP inhibits migration of neutrophils toward the chemoattractant, f-Met-Leu-Phe (fMLP) and therefore acts as an anti-inflammatory agent. Since tyrosine kinases are involved in neutrophil migration and CRP has been shown to decrease phosphorylation of some neutrophil proteins, we hypothesized that CRP inhibits neutrophil chemotaxis via inhibition of MAP kinase activity. The importance of p38 MAP kinase in neutrophil movement was determined by use of the specific p38 MAP kinase inhibitor, SB203580. CRP and SB203580 both blocked random and fMLP-directed neutrophil movement in a concentration-dependent manner. Additionally, extracellular signal-regulated MAP kinase (ERK) was not involved in fMLP-induced neutrophil movement as determined by use of the MEK-specific inhibitor, PD98059. Blockade of ERK with PD98059 did not inhibit chemotaxis nor did it alter the ability of CRP or SB203580 to inhibit fMLP-induced chemotaxis. More importantly, CRP inhibited fMLP-induced p38 MAP kinase activity in a concentration-dependent manner as measured by an in vitro kinase assay. Impressively, CRP-mediated inhibition of p38 MAP kinase activity correlated with CRP-mediated inhibition of fMLP-induced chemotaxis (r = -0.7144). These data show that signal transduction through p38 MAP kinase is necessary for neutrophil chemotaxis and that CRP intercedes through this pathway in inhibiting neutrophil movement.  相似文献   

2.
Surfactant protein A (SP-A), a pulmonary lectin, plays an important role in regulating innate immune cell function. Besides accelerating pathogen clearance by pulmonary phagocytes, SP-A also stimulates alveolar macrophage chemotaxis and directed actin polymerization. We hypothesized that SP-A would also stimulate neutrophil chemotaxis. With the use of a Boyden chamber assay, we found that SP-A (0.5-25 microg/ml) did not stimulate chemotaxis of rat peripheral neutrophils or inflammatory bronchoalveolar lavage (BAL) neutrophils isolated from LPS-treated lungs. However, SP-A affected neutrophil chemotaxis toward the bacterial peptide formyl-met-leu-phe (fMLP). Surprisingly, the effect was different for the two neutrophil populations: SP-A reduced peripheral neutrophil chemotaxis toward fMLP (49 +/- 5% fMLP alone) and enhanced inflammatory BAL neutrophil chemotaxis (277 +/- 48% fMLP alone). This differential effect was not seen for the homologous proteins mannose binding lectin and complement protein 1q but was recapitulated by type IV collagen. SP-A bound both neutrophil populations comparably and did not alter formyl peptide binding. These data support a role for SP-A in regulating neutrophil migration in pulmonary tissue.  相似文献   

3.
Neutrophils, the early responders of the immune system, eliminate intruders, but their over-activation can also instigate tissue damage leading to various autoimmune and inflammatory disease conditions. As approaches causing neutropenia are associated with immunodeficiency, targeting aberrant neutrophil infiltration offers an attractive strategy in neutrophil-centered diseases including acute lung injury. Rho GTPase family proteins Rho, Rac and Cdc42 play important role as regulators of chemotaxis in diverse systems. Rho inhibitors protected against lung injuries, while genetic Rho-deficiency exhibited neutrophil hyperactivity and exacerbated lung injury. These differential outcomes might be due to distinct effects on different cell types or activation/ inhibition of specific signaling pathways responsible for neutrophil polarity, migration and functions. In this study, we explored neutrophil centric effects of Rho signaling mitigation. Consistent with previous reports, Rho signaling inhibitor Y-27632 provided protection against acute lung injury, but without regulating LPS mediated systemic increase of neutrophils in the circulation. Interestingly, the adoptive transfer approach identified a specific defect in neutrophil migration capacity after Rho signaling mitigation. These defects were associated with loss of polarity and altered actin dynamics identified using time-lapse in vitro studies. Further analysis revealed a rescue of stimulation-dependent L-selectin shedding on neutrophils with Rho signaling inhibitor. Surprisingly, functional blocking of L-selectin (CD62L) led to defective recruitment of neutrophils into inflamed lungs. Further, single-cell level analyses identified MAPK signaling as downstream mechanism of Rho signaling and L-selectin mediated effects. p-AKT levels were diminished in detergent resistance membrane-associated signalosome upon Rho signaling inhibition and blockade of selectin. Moreover, inhibition of AKT signaling as well as selectin blocking led to defects in neutrophil polarity. Together, this study identified Rho-dependent distinct L-selectin and AKT signaling mediated regulation of neutrophil recruitment to inflamed lung tissue.  相似文献   

4.
Previous studies have demonstrated the early appearance of inflammatory cytokines in the systemic circulation after thermal injury both in humans and animals. The aim of this study was to evaluate the time course of several cytokines, IL-6, TNF-alpha and IL-1beta in serum, lung, liver and brain of severely burned rats during the first week after thermal injury. Cytokine measurements were performed by enzyme-linked immunosorbent assay (ELISA). The comparison between the sham-burned animals and animals with third-degree burns on 20% or 40% of their total body surface area allowed for the study of the inflammatory process relative to the size of the injury. Serum IL-6 levels, which were undetectable in sham-treated animals, peaked during the first hours after injury and were proportionate to the size of the area burned. After a few days, IL-6 increased once more, but only in the most severely burned rats. In lung, liver and brain, low but measurable basal levels of TNF-alpha and IL-1 were detected in sham-burned animals. Strikingly, IL-1beta levels remained significantly elevated in the lung after injury in animals having 20% and 40% burned skin area. Unexpectedly, both TNF-alpha and IL-1beta production decreased gradually in liver and brain after burn injury. Also, the inflammatory response after a burn injury appeared to be biphasic. The first period corresponded to the early release of IL-6 into the circulation, proportional to the severity of the injury. After a few days, a second period was marked by the extension of the inflammatory processes from the injured area to the rest of the body, particularly to lung, which could be considered as at potential risk of involvement in severely burned patients.  相似文献   

5.
Sepsis is a systemic inflammatory response commonly caused by bacterial infection. We demonstrated that the outcome of sepsis induced by cecal ligation and puncture (CLP) correlates with the severity of the neutrophil migration failure towards infectious focus. Failure appears to be due to a decrease in the rolling and adhesion of neutrophil to endothelium cells. It seems that neutrophil migration impairment is mediated by the circulating inflammatory cytokines, such as TNF-alpha and IL-8, which induce the nitric oxide (NO) production systemically. It is supported by the fact that intravenous administration of these cytokines reduces the neutrophil migration induced by different inflammatory stimuli, and in severe sepsis the circulating concentrations of the cytokines and chemokines are significantly increased. Moreover, the neutrophil migration failure and the reduction in the rolling/adhesion were not observed in iNOS-/- mice and, aminoguanidine prevented this event. We also demonstrated that the failure of neutrophil migration is a Toll-4 receptor (TLR4) dependent mechanism, since it was not observed in TLR4 deficient mice. Furthermore, it was also observed that circulating neutrophils obtained from septic patients present failure of neutrophil chemotaxis toward fMLP, IL-8, and LTB4 and an increased in sera concentrations of NO3 and cytokines. In conclusion, we demonstrated that, in sepsis, failure of neutrophil migration is critical for the outcome and that NO is involved in the process.  相似文献   

6.
Motility of lymphocytes plays a significant role in their functions. Because macrophages frequently associate with lymphocytes in lymphoid tissues and inflammatory sites, they are likely to be important in regulating lymphocyte motility. In this study, we identified a chemokinetic activity in macrophage culture supernatants. Interestingly, this activity could be detected by the capillary migration assay but not by the more commonly used Boyden chamber chemotaxis assay. Colchicine, on the other hand, was chemokinetic for lymphocytes in the Boyden chamber chemotaxis assay but not in the capillary migration assay. Both these observations and previous studies on the morphology of motile lymphocytes on two-dimensional (2-D) surfaces (capillary migration assay) and in 3-D matrices (Boyden chamber chemotaxis assay) suggest that lymphocytes possess more than one motility mechanism--one for 2-D surfaces and one for 3-D matrices. We propose that the macrophage-derived chemokinetic activity described herein only affected the motility mechanism on 2-D surfaces. In addition, we also observed that the chemokinetic activity was produced by "resting" macrophages and could not be augmented by further activation. Finally, the effect was greatest on mature T cells. We propose that this factor plays an important role in facilitating cell interactions within lymphoid tissues and inflammatory sites.  相似文献   

7.
Luminol-dependent chemiluminescence (CL) of blood neutrophils stimulated with phorbol-12- myristate-13-acetate (PMA) and myeloperoxidase (MPO) activity of neutrophils and plasma have been investigated in children (n = 16) during the early period (1?7 days) after thermal skin burns exceeding 20% of total body surface. The CL level of stimulated neutrophils was higher in burn patients than in healthy children of the reference group (p lt; 0.01). Increased neutrophil MPO activity was found in 40% of patients, while increased plasma MPO activity was detected in 57% of patients. The albumin fraction isolated from plasma of burn patients increased the PMA-stimulated CL response of blood from healthy donors. These results suggest that the acute inflammatory response to the thermal burn causes neutrophil activation and MPO release into plasma. MPO-mediated modification of plasma proteins, particularly albumin, may stimulate neutrophil activation and provoke further inflammatory response of the body to the thermal injury.  相似文献   

8.
Pituitary adenylate cyclase-activating peptide 38 (PACAP 38) is a neuropeptide that displays several biological effects of interest in the context of airway diseases such as asthma and chronic obstructive pulmonary disease. These effects include inhibition of airway and vascular smooth muscle tone as well as modulation of inflammatory cell activity. However, little is known about the effect of PACAP on granulocytes. The present study was designed to investigate if PACAP and the closely related peptide vasoactive intestinal peptide (VIP) could affect neutrophil migration. A standard 48 well chemotaxis chamber was used to assess the effects of PACAP on N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced neutrophil chemotaxis and spontaneous random migration. PACAP 38 and VIP inhibited fMLP-induced human neutrophil chemotaxis. Furthermore, both peptides also exhibited a dose-related trend toward inhibiting the spontaneous, unstimulated migration of neutrophils. Since enhanced cell migration in cell chamber systems is reported to correlate with increased invasive properties in vivo, the presented inhibitory effects of PACAP 38 on neutrophil chemotaxis, supports the idea of an anti-inflammatory role for PACAP. This together with the well documented bronchodilatory capacity of PACAP might indicate a role for PACAP-agonists in future treatment of asthma and other inflammatory airway diseases.  相似文献   

9.
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.  相似文献   

10.
We evaluated the dependency of neutrophil O production on PTK-Lyn and MAPK-ERK1/2 in rats after thermal injury. Activation of PTK-Lyn was assessed by immunoprecipitation. Phosphorylation of ERK1/2 was assessed by Western blot analysis. O production was measured by isoluminol-enhanced luminometry. Imaging technique was employed to measure neutrophil [Ca2+](i) in individual cells. Thermal injury caused marked upregulation of Lyn and ERK1/2 accompanying enhanced neutrophil O production. Treatment of rats with PTK blocker (AG556) or MAPK blocker (AG1478) before burn injury caused complete inhibition of the respective kinase activation. Both AG556 and AG1478 produced an ~66% inhibition in O production. Treatment with diltiazem (DZ) produced an ~37% inhibition of O production without affecting Lyn or ERK1/2 activation with burn injury. Ca2+ mobilization was upregulated with burn injury but not affected by treatment of burn rats with AG556. Unlike the partial inhibition of burn-induced O production by AG556, AG1478, or DZ, platelet-activating factor antagonist (PAFa) treatment of burn rats produced near complete inhibition of O production. PAFa treatment also blocked activation of Lyn. The findings suggest that the near complete inhibition of O production by PAFa was a result of blockade of PTK as well as Ca2+ signaling. Overall, our studies show that enhanced neutrophil O production after thermal injury is a result of potentiation of Ca2+ -linked and -independent signaling triggered by inflammatory agents such as PAF.  相似文献   

11.
Overwhelming infection remains the leading cause of death from serious burn injury despite recent advances in the care of burn patients and a better understanding of immune and inflammatory consequences of injury. In this study, we report a critical requirement for CD1d-restricted NKT cells and CD1d expression by APCs in the immune dysfunction that occurs early after burn injury. Using a well-established murine scald injury model with BALB/c and BALB/c CD1d knockout mice, we investigated whether peripheral T cell immunity was affected by the presence or absence of CD1d-restricted NKT cells in the early stages after injury. Using Ag-specific delayed-type hypersensitivity, T cell proliferation, and cytokine production as indices of immune responsiveness, we observed that both CD1d expression by APCs and CD1d-restricted NKT cells are required for immune suppression after injury. Via adoptive transfer of splenocytes from injured mice to uninjured recipients, we found injury-induced suppression of immunity to be Ag specific, long lasting, and critically dependent on cell surface expression of CD1d by APCs. Together, our results suggest that the defects in T cell responsiveness that occur subsequent to severe burn injury are not merely the result of global or passive suppression, but instead represent an active form of CD1d/NKT cell-dependent immunologic tolerance.  相似文献   

12.
Inhibitory effect upon neutrophil migration to the inflammatory focus was previously detected in the cell-free incubation fluid of lipopolysaccharide (LPS)-stimulated macrophage monolayers. In the present study we showed that the neutrophil recruitment inhibitory activity from this supernatant was mainly detected in a fraction (P2) obtained by gel filtration chromatography on Sephacryl S-300. P2 fraction was able to inhibit 'in vivo' neutrophil emigration induced by different inflammatory stimuli, but it did not affect 'in vitro' neutrophil chemotaxis induced by FMLP. When injected intravenously, P2 inhibited oedema induced by carrageenin or immunological stimulus but not the oedema induced by dextran, thus affecting cell-dependent inflammatory responses. It was observed that P2 also induced neutrophil migration when injected locally in peritoneal cavities. This activity was significantly reduced by pretreatment of the animals with dexamethasone. Cytokines, such as IL-8 and TNF-alpha that are known to exhibit inhibitory effect upon neutrophil migration, were not detected in P2 fraction by highly sensitive assays. Overall the results suggest the existence of a novel cytokine exhibiting 'in vivo' neutrophil inhibitory activity, referred as NRIF.  相似文献   

13.
Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.  相似文献   

14.
Critical illness is associated with muscle wasting and muscle weakness. Using burn injury as a model of local and systemic inflammatory response, we tested the hypothesis that thermal injury causes apoptosis in muscle. After a 40% body surface area burn to rats, abdominal muscles beneath the burn and limb muscles distant from the burn were examined for apoptosis at varying times after burn. Ladder assay, ELISA, and histological methods showed evidence of apoptosis in the abdominal muscles within 4-12 h with peak changes occurring at 3-7 days. Maximal apoptosis was also evident at distant limb muscles at 3-7 days. Investigation of proapoptotic pathways indicated mitochondrial membrane potential to be altered by 1 h after burn. Starting at 15 min after burn, cytochrome c was released from the mitochondria into the cytosol, followed by increased activity of caspase-3, starting at 6 h after burn. These studies suggest that mitochondria and caspase-mediated apoptotic pathways may be an additional mechanism of muscle weight loss in burns and may be potential therapeutic targets for prevention of muscle wasting.  相似文献   

15.
A rapid recruitment of neutrophils to sites of injury or infection is a hallmark of the inflammatory response and is required for effective host defense against pathogenic stimuli. However, neutrophil-mediated inflammation can also lead to chronic tissue destruction; therefore, a better understanding of the mechanisms underlying neutrophil influx and activation is of critical importance. We have previously shown that the acute phase protein α1-antitrypsin (AAT) inhibits neutrophil chemotaxis. In this study, we examine mechanisms related to the effect of AAT on neutrophil responses. We report a previously unknown function of AAT to inactivate calpain I (μ-calpain) and to induce a rapid cell polarization and random migration. These effects of AAT coincided with a transient rise in intracellular calcium, increase in intracellular lipids, activation of the Rho GTPases, Rac1 and Cdc42, and extra-cellular signal-regulated kinase (ERK1/2). Furthermore, AAT caused a significant inhibition of nonstimulated as well as formyl-met-leu-phe (fMLP)-stimulated neutrophil adhesion to fibronectin, strongly inhibited lipopolysaccharide-induced IL-8 release and slightly delayed neutrophil apoptosis. The results presented here broaden our understanding of the regulation of calpain-related neutrophil functional activities, and provide the impetus for new studies to define the role of AAT and other acute phase proteins in health and disease.  相似文献   

16.
The cells of the mononuclear phagocyte system are essential for the correct healing of adult skin wounds, but their specific functions remain ill-defined. The absence of granulation tissue immediately after skin injury makes it challenging to study the role of mononuclear phagocytes at the initiation of this inflammatory stage. To study their recruitment and migratory behavior within the wound bed, we developed a new model for real-time in vivo imaging of the wound, using transgenic mice that express green and cyan fluorescent proteins and specifically target monocytes. Within hours after the scalp injury, monocytes invaded the wound bed. The complete abrogation of this infiltration in monocyte-deficient CCR2−/− mice argues for the involvement of classical monocytes in this process. Monocyte infiltration unexpectedly occurred as early as neutrophil recruitment did and resulted from active release from the bloodstream toward the matrix through microhemorrhages rather than transendothelial migration. Monocytes randomly scouted around the wound bed, progressively slowed down, and stopped. Our approach identified and characterized a rapid and earlier than expected wave of monocyte infiltration and provides a novel framework for investigating the role of these cells during early stages of wound healing.  相似文献   

17.
Neutrophil associated lung injury is identified with a variety of local and systemic priming insults. In vitro studies have shown that TNF-alpha mediated suppression of neutrophil apoptosis is due to the secretion of interleukin-8 (IL-8), a human chemokine shown to alter neutrophil chemotaxis. Our initial in vitro antibody neutralization studies with neutrophil chemotactic proteins, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2alpha (MIP-2alpha), mouse IL-8 homologues, indicate that MIP-2alpha but not KC appears to mediate TNF-alpha suppression of mouse neutrophil apoptosis. Therefore, we hypothesized that in vivo neutralization of KC or MIP-2alpha during an initial priming insult would produce differential effects on the extent of lung injury by restoring normal neutrophil apoptotic function. To assess this, mice were hemorrhaged followed with septic challenge at 24 h. Antibody against KC or MIP-2alpha or a nonspecific IgG was given during resuscitation immediately following hemorrhage. Anti-MIP-2alpha treatment resulted in a significant reduction in lung tissue IL-6 and myeloperoxidase levels. Percentage of neutrophil apoptosis increased significantly in the anti-KC group. Tissue and plasma KC and MIP-2alpha were reduced in their respective treatment groups. These data suggest that KC and MIP-2alpha differ in their mediation of neutrophil function (apoptosis and chemotaxis) and contribution to the pathogenesis of lung injury following hemorrhage subsequent to sepsis.  相似文献   

18.
Arum maculatum agglutinin (AMA) is a monocot lectin isolated from tubers of Arum maculatum L. (Araceae) which exhibits different specificity towards oligo-mannosidic-type and N-acetyllactosaminic-type glycans. We have investigated the effect of this lectin on the cells of the immune system. Models of neutrophil migration in vivo, neutrophil chemotaxis in vitro and macrophage cultures were used to study the lectin inflammatory activity. When administered into rat peritoneal cavities, AMA (80, 200 and 500 microg/mL/cavity) induced significant and dose-dependent neutrophil migration. This effect was inhibited by incubation with alpha-methyl-d-mannoside. A 83% depletion in the number of resident cells following peritoneal lavage did not reduce the AMA-induced neutrophil migration, as compared to sham animals (not washed). However, pre-treatment with 3% thioglycolate which increases the peritoneal macrophage population by 236%, enhanced the neutrophil migration induced by AMA (200 microg/mL/cavity) (119%, p < 0.05). Reduction of peritoneal mast cell population by chronic treatment of cavities with compound 48/80 did not modify AMA-induced neutrophil migration. The neutrophil chemotaxy assay in vitro shows that the lectin (300 microg/mL) induces neutrophil chemotaxy (368% p < 0.05) compared to RPMI. Finally, injection into peritoneal cavities of supernatants from macrophage cultures obtained after stimulation with AMA (300 microg/mL) enhanced neutrophil migration (110% p < 0.05). Summarizing, our data suggest that A. maculatum agglutinin presents pro-inflammatory activity, inducing neutrophil migration by two ways, one which is independent on resident cells and another one dependent on the presence of these cells.  相似文献   

19.
Hyperoxia-induced lung injury complicates the care of many critically ill patients who receive supplemental oxygen therapy. Hyperoxic injury to lung tissues is mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines. IFN-gamma is known to be induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. To determine whether IFN-gamma contributes to hyperoxia-induced lung injury, we first used anti-mouse IFN-gamma antibody to blockade IFN-gamma activity. Administration of anti-mouse IFN-gamma antibody inhibited hyperoxia-induced increases in pulmonary alveolar permeability and neutrophil migration into lung air spaces. To confirm that IFN-gamma contributes to hyperoxic lung injury, we then simultaneously exposed IFN-gamma-deficient (IFN-gamma-/-) mice and wild-type mice to hyperoxia. In the early phase of hyperoxia, permeability changes and neutrophil migration were significantly reduced in IFN-gamma-/- mice compared with wild-type mice, although the differences in permeability changes and neutrophil migration between IFN-gamma-/- mice and wild-type mice were not significant in the late phase of hyperoxia. The concentrations of IL-12 and IL-18, two cytokines that play a role in IFN-gamma induction, significantly increased in bronchoalveolar lavage fluid after exposure to hyperoxia in both IFN-gamma-/- mice and wild-type mice, suggesting that hyperoxia initiates upstream events that result in IFN-gamma production. Although there was no significant difference in overall survival, IFN-gamma-/- mice had a better early survival rate than did the wild-type mice. Therefore, these data strongly suggest that IFN-gamma is a key molecular contributor to hyperoxia-induced lung injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号