首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

2.
Interaction of advanced glycation end products (AGE) with AGE receptors induces several cellular phenomena potentially relating to diabetic complications. Five AGE receptors identified so far are RAGE (receptor for AGE), galectin-3, 80K-H, OST-48, and SRA (macrophage scavenger receptor class A types I and II). Since SRA is known to belong to the class A scavenger receptor family, and the scavenger receptor collectively represents a family of multiligand lipoprotein receptors, it is possible that CD36, although belonging to the class B scavenger receptor family, can recognize AGE proteins as ligands. This was tested at the cellular level in this study using Chinese hamster ovary (CHO) cells overexpressing human CD36 (CD36-CHO cells). Cellular expression of CD36 was confirmed by immunoblotting and immunofluorescent microscopy using anti-CD36 antibody. Upon incubation at 37 degrees C, (125)I-AGE-bovine serum albumin (AGE-BSA) and (125)I-oxidized low density lipoprotein (LDL), an authentic ligand for CD36, were endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CD36-CHO cells, but not wild-type CHO cells. In binding experiments at 4 degrees C, (125)I-AGE-BSA exhibited specific and saturable binding to CD36-CHO cells (K(d) = 5.6 microg/ml). The endocytic uptake of (125)I-AGE-BSA by these cells was inhibited by 50% by oxidized LDL and by 60% by FA6-152, an anti-CD36 antibody inhibiting cellular binding of oxidized LDL. Our results indicate that CD36 expressed by these cells mediates the endocytic uptake and subsequent intracellular degradation of AGE proteins. Since CD36 is one of the major oxidized LDL receptors and is up-regulated in macrophage- and smooth muscle cell-derived foam cells in human atherosclerotic lesions, these results suggest that, like oxidized LDL, AGE proteins generated in situ are recognized by CD36, which might contribute to the pathogenesis of diabetic macrovascular complications.  相似文献   

3.
Cellular interactions of advanced glycation end products (AGE) are mediated by AGE receptors. We demonstrated previously that class A scavenger receptor types I and II (SR-A) and CD36, a member of class B scavenger receptor family, serve as the AGE receptors. In this study, we investigated whether scavenger receptor class B type I (SR-BI), another receptor belonging to class B scavenger receptor family, was also an AGE receptor. We used Chinese hamster ovary (CHO) cells overexpressed hamster SR-BI (CHO-SR-BI cells). (125)I-AGE-bovine serum albumin (AGE-BSA) was endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CHO-SR-BI cells. (125)I-AGE-BSA exhibited saturable binding to CHO-SR-BI cells (K(d) = 8.3 microg/ml). Endocytic uptake of (125)I-AGE-BSA by CHO-SR-BI cells was completely inhibited by oxidized low density lipoprotein (LDL) and acetylated LDL, whereas LDL exerted only a weak inhibitory effect (<20%). Cross-competition experiments showed that AGE-BSA had no effect on HDL binding to these cells and vice versa. Interestingly, however, SR-BI-mediated selective uptake of HDL-CE was completely inhibited by AGE-BSA in a dose-dependent manner (IC(50) <10 microg/ml). Furthermore, AGE-BSA partially inhibited (by <30%) the selective uptake of HDL-CE in human hepatocarcinoma HepG2 cells (IC(50) <30 microg/ml). In addition, [(3)H]cholesterol efflux from CHO-SR-BI cells to HDL was significantly inhibited by AGE-BSA in a dose-dependent manner (IC(50) <30 microg/ml). Our results indicate that AGE proteins, as ligands for SR-BI, effectively inhibit both SR-BI-mediated selective uptake of HDL-CE and cholesterol efflux from peripheral cells to HDL, suggesting that AGE proteins might modulate SR-BI-mediated cholesterol metabolism in vivo.  相似文献   

4.
The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.  相似文献   

5.
Scavenger receptors are modified lipoprotein binding receptors, expressed on the surface of a variety of cells including endothelial, macrophages and platelets. The most extensively studied class B scavenger receptors comprise of CD36 and SR-BI and have been found to bind to native and modified LDL. Interaction of modified LDL to CD36 accelerates foam cell formation, the key step in atherosclerotic plaque deposition. Recently scavenger receptors have also been implicated in thrombosis. Platelet CD36 serves as a sensor of oxidative stress and modulator of platelet reactivity under hyperlipidemic conditions thus, inducing prothrombotic signals. In contrast, targeting platelet SR-BI corresponds to reduce platelet hyperreactivity in hyperlipidemia suggesting that targeting these receptors could be a promising strategy for the treatment of atherothrombotic disorders.  相似文献   

6.
Advanced glycation end products (AGEs) are nonenzymatically glycosylated proteins, which accumulate in vascular tissues in aging and diabetes. Receptors for AGEs include scavenger receptors, which recognize acetylated low density lipoproteins (Ac-LDL) such as scavenger receptor class AI/AII (SR-A), cell surface glycoprotein CD36, scavenger receptor class B type I (SR-BI), and lectin-like oxidized low density lipoprotein receptor-1. The broad ligand repertoire of these receptors as well as the diversity of the receptors for AGEs have prompted us to examine whether AGEs are also recognized by the novel scavenger receptors, which we have recently isolated from a cDNA library prepared from human umbilical vein endothelial cells, such as the scavenger receptor expressed by endothelial cells-I (SREC-I); the fasciclin EGF-like, laminin-type EGF-like, and link domain-containing scavenger receptor-1 (FEEL-1); and its paralogous protein, FEEL-2. At 4 degrees C, (125)I-AGE-bovine serum albumin (BSA) exhibited high affinity specific binding to Chinese hamster ovary (CHO) cells overexpressing FEEL-1 (CHO-FEEL-1) and FEEL-2 (CHO-FEEL-2) with K(d) of 2.55 and 1.68 microg/ml, respectively, but not to CHO cells expressing SREC (CHO-SREC) and parent CHO cells. At 37 degrees C, (125)I-AGE-BSA was taken up and degraded by CHO-FEEL-1 and CHO-FEEL-2 cells but not by CHO-SREC and parent CHO cells. Thus, the ability to bind Ac-LDL is not necessarily a prerequisite to bind AGEs. The (125)I-AGE-BSA binding to CHO-FEEL-1 and CHO-FEEL-2 cells was effectively inhibited by Ac-LDL and polyanionic SR-A inhibitors such as fucoidan, polyinosinic acids, and dextran sulfate but not by native LDL, oxidized LDL, or HDL. FEEL-1, which is expressed by the liver and vascular tissues, may recognize AGEs, thereby contributing to the development of diabetic vascular complications and atherosclerosis.  相似文献   

7.
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.  相似文献   

8.
The class B, type I scavenger receptor (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. SR-BI is predominantly associated with caveolae in Chinese hamster ovary cells. The caveola protein, caveolin-1, binds to cholesterol and is involved in intracellular cholesterol trafficking. We previously demonstrated a correlative increase in caveolin-1 expression and the selective uptake of HDL cholesteryl esters in phorbol ester-induced differentiated THP-1 cells. The goal of the present study was to determine if the expression of caveolin-1 is the causative factor in increasing selective cholesteryl ester uptake in macrophages. To test this, we established RAW and J-774 cell lines that stably expressed caveolin-1. Transfection with caveolin-1 cDNA did not alter the amount of 125I-labeled HDL that associated with the cells, although selective uptake of HDL [3H]cholesteryl ether was decreased by approximately 50%. The amount of [3H]cholesterol effluxed to HDL was not affected by caveolin-1. To directly address whether caveolin-1 inhibits SR-BI-dependent selective cholesteryl ester uptake, we overexpressed caveolin-1 by adenoviral vector gene transfer in Chinese hamster ovary cells stably transfected with SR-BI. Caveolin-1 inhibited the selective uptake of HDL [3H]cholesteryl ether by 50-60% of control values without altering the extent of cell associated HDL. We next used blocking antibodies to CD36 and SR-BI to demonstrate that the increase in selective [3H]cholesteryl ether uptake previously seen in differentiated THP-1 cells was independent of SR-BI. Finally, we used beta-cyclodextrin and caveolin overexpression to demonstrate that caveolae depleted of cholesterol facilitate SR-BI-dependent selective cholesteryl ester uptake and caveolae containing excess cholesterol inhibit uptake. We conclude that caveolin-1 is a novel negative regulator of SR-BI-dependent selective cholesteryl ester uptake.  相似文献   

9.
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors.  相似文献   

10.
The murine class B, type I scavenger receptor mSR-BI is a high and low density lipoprotein (HDL and LDL) receptor that mediates selective uptake of cholesteryl esters. Here we describe a reconstituted phospholipid/cholesterol liposome assay of the binding and selective uptake activities of SR-BI derived from detergent-solubilized cells. The assay, employing lysates from epitope-tagged receptor (mSR-BI-t1)-expressing mammalian and insect cells, recapitulated many features of SR-BI activity in intact cells, including high affinity and saturable (125)I-HDL binding, selective lipid uptake from [(3)H]cholesteryl ether-labeled HDL, and poor inhibition of HDL receptor activity by LDL. The novel properties of a mutated receptor (Q402R/Q418R, normal LDL binding but loss of most HDL binding) were reproduced in the assay, as was the ability of the SR-BI homologue CD36 to bind HDL but not mediate efficient lipid uptake. In this assay, essentially homogeneously pure mSR-BI-t1, prepared by single-step immunoaffinity chromatography, mediated high affinity HDL binding and efficient selective lipid uptake from HDL. Thus, SR-BI-mediated HDL binding and selective lipid uptake are intrinsic properties of the receptor that do not require the intervention of other proteins or specific cellular structures or compartments.  相似文献   

11.
We have recently demonstrated that specific oxidized phospholipids (oxPC(CD36)) accumulate at sites of oxidative stress in vivo such as within atherosclerotic lesions, hyperlipidemic plasma, and plasma with low high-density lipoprotein levels. oxPC(CD36) serve as high affinity ligands for the scavenger receptor CD36, mediate uptake of oxidized low density lipoprotein by macrophages, and promote a pro-thrombotic state via platelet scavenger receptor CD36. We now report that oxPC(CD36) represent ligands for another member of the scavenger receptor class B, type I (SR-BI). oxPC(CD36) prevent binding to SR-BI of its physiological ligand, high density lipoprotein, because of the close proximity of the binding sites for these two ligands on SR-BI. Furthermore, oxPC(CD36) interfere with SR-BI-mediated selective uptake of cholesteryl esters in hepatocytes. Thus, oxidative stress and accumulation of specific oxidized phospholipids in plasma may have an inhibitory effect on reverse cholesterol transport.  相似文献   

12.
Scavenger receptors for oxidized and glycated proteins   总被引:16,自引:0,他引:16  
Horiuchi S  Sakamoto Y  Sakai M 《Amino acids》2003,25(3-4):283-292
Summary. Our present knowledge on chemically modified proteins and their receptor systems is originated from a proposal by Goldstein and Brown in 1979 for the receptor for acetylated LDL which is involved in foam cell formation, one of critical steps in atherogenesis. Subsequent extensive studies using oxidized LDL (OxLDL) as a representative ligand disclosed at least 11 different scavenger receptors which are collectively categorized as scavenger receptor family. Advanced glycation endproducts (AGE) and their receptor systems have been studied independently until recent findings that AGE-proteins are also recognized as active ligands by scavenger receptors including class A scavenger receptor (SR-A), class B scavenger receptors such as CD36 and SR-BI, type D scavenger receptor (LOX-1) and FEEL-1/FEEL-2. Three messages can be summarized from these experiments; (i) endocytic uptake of OxLDL and AGE-proteins by macrophages or macrophage-derived cells is mainly mediated by SR-A and CD36, which is an important step for foam cell formation in the early stage of atherosclerosis, (ii) selective uptake of cholesteryl esters of high density lipoprotein (HDL) mediated by SR-BI is inhibited by AGE-proteins, suggesting a potential pathological role of AGE in a HDL-mediated reverse cholesterol transport system, (iii) a novel scavenger receptor is involved in hepatic clearance of plasma OxLDL and AGE-proteins.  相似文献   

13.
Transforming growth factor-beta1 (TGF-beta1), a key cytokine for control of cell growth, extracellular matrix formation, and inflammation control, is secreted by many cells present in the arteriosclerotic plaque. Lipid accumulation in the vessel wall is regarded as an early step in atherogenesis and depends on uptake of modified low-density lipoprotein (LDL) by macrophages through scavenger receptors and their transformation into foam cells. Prominent members of the scavenger receptor family are the class A type I and II receptors (ScR-A), the class B receptor CD36, and the recently detected lectin-like oxidized LDL receptor-1 (LOX-1), which, unlike the native LDL receptor (LDL-R), are not feedback controlled. CD36 is responsible for >50% of modified LDL uptake into human monocyte-derived macrophages. We therefore studied whether TGF-beta1 influences expression and function of ScR-A, CD36, and LOX-1 in monocytes using RT-PCR and flow cytometry. Total uptake of oxidized LDL by monocytoid cells, reflecting the combined function of all scavenger receptors, was significantly reduced by TGF-beta1. At initially low picomolar concentrations, TGF-beta1 decreased CD36 mRNA and protein surface expression and ScR-A mRNA levels in the human monocytic cell line THP-1 and in freshly isolated and cultivated human monocytes, whereas LOX-1 mRNA was increased. Expression of LDL-R and beta-actin was not affected by TGF-beta1. In conclusion, depression of scavenger receptor function in monocytes by TGF-beta1 in low concentrations reduces foam cell formation. Together with matrix control by TGF-beta1, this may be important for atherogenesis and plaque stabilization.  相似文献   

14.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

15.
The cellular interaction of proteins modified with advanced glycation end-products (AGEs) is believed to induce several different biological responses, which are involved in the development of diabetic vascular complications. We report here that the ratio of protein glycation is implicated in its ligand activity to scavenger receptors. Although highly-modified AGE-bovine serum albumin (high-AGE-BSA) was significantly recognized by human monocyte-derived macrophages and Chinese hamster ovary cells which overexpress such scavenger receptors as CD36, SR-BI (scavenger receptor class B type-I), and LOX-1 (Lectin-like Ox-LDL receptor-1), the mildly-modified-AGE-BSA (mild-AGE-BSA) did not show any ligand activity to these cells. Furthermore, when (111)In-labeled high- or mild-AGE-BSA were injected into the tail vein of mice, the high-AGE-BSA was rapidly cleared from the circulation whereas the clearance rate of the mild-AGE-BSA was very slow, similar to the native BSA. These results demonstrate the first evidence that the ligand activity of the AGE-proteins to the scavenger receptors and its pharmacokinetic properties depend on their rate of modification by AGEs, and we should carefully prepare the AGE-proteins in vitro to clarify the physiological significance of the interaction between the AGE-receptors and AGE-proteins.  相似文献   

16.
The NOD-like receptor family, pyrin domain–containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.  相似文献   

17.
Oxidation of low density lipoproteins (LDL) induced by incubation with Cu(2+) ions results in the formation of a heterogeneous group of aldehydic adducts on lysyl residues (Lys) of apolipoprotein B (apoB) that are thought to be responsible for the uptake of oxidized LDL (oxLDL) by macrophages. To define the structural and chemical criteria governing such cell recognition, we induced two modifications of lysines in LDL that mimic prototypic adducts present in oxLDL; namely, epsilon-amino charge-neutralizing pyrrolation by treatment with 2,5-hexanedione (hdLDL), and epsilon-amino charge-retaining pyridinium formation via treatment with 2,4,6-trimethylpyrylium (tmpLDL). Both modifications led to recognition by receptors on mouse peritoneal macrophages (MPM). To assess whether the murine scavenger receptor class A-I (mSR-A) was responsible for recognition of hdLDL or tmpLDL in MPM, we measured binding at 4 degrees C and degradation at 37 degrees C of these modified forms of (125)I-labeled LDL by mSR-A-transfected CHO cells. Although uptake and degradation of hdLDL by mSR-A-transfected CHO cells was quantitatively similar to that of the positive control, acLDL, tmpLDL was not recognized by these cells. However, both tmpLDL and hdLDL were recognized by 293 cells that had been transfected with CD36. In the human monocytic cell line THP-1 that had been activated with PMA, uptake of tmpLDL was significantly inhibited by blocking monoclonal antibodies to CD36, further suggesting recognition of tmpLDL by this receptor. Macrophage uptake and degradation of LDL oxidized by brief exposure to Cu(2+) was inhibited more effectively by excess tmpLDL and hdLDL than was more extensively oxidized LDL, consistent with the recognition of the former by CD36 and the latter primarily by SR-A.Collectively, these studies suggest that formation of specific pyrrole adducts on LDL leads to recognition by both the mSR-A and mouse homolog of CD36 expressed on MPM, while formation of specific pyridinium adducts on LDL leads to recognition by the mouse homolog of CD 36 but not by mSR-A. As such, these two modifications of LDL may represent useful models for dissecting the relative contributions of specific modifications on LDL produced during oxidation, to the cellular uptake of this heterogeneous ligand.  相似文献   

18.
To learn more about how the step of cholesterol uptake into the brush border membrane (BBM) of enterocytes influences overall cholesterol absorption, we measured cholesterol absorption 4 and 24 h after administration of an intragastric bolus of radioactive cholesterol in mice with scavenger receptor class B, type 1 (SR-BI) and/or cluster determinant 36 (CD36) deleted. The cholesterol absorption efficiency is unaltered by deletion of either one or both of the receptors. In vitro determinations of the cholesterol uptake specific activity of the BBM from the mice reveal that the scavenger receptors facilitate cholesterol uptake into the proximal BBM. It follows that cholesterol uptake into the BBM is not normally rate-limiting for the cholesterol absorption process in vivo; a subsequent step, such as NPC1L1-mediated transfer from the BBM into the interior of the enterocyte, is rate-limiting. The absorption of dietary cholesterol after 4 h in mice lacking SR-BI and/or CD36 and fed a high-fat/high-cholesterol diet is delayed to more distal regions of the small intestine. This effect probably arises because ATP binding cassette half transporters G5 and G8-mediated back flux of cholesterol from the BBM to the lumen of the small intestine limits absorption and causes the local cholesterol uptake facilitated by SR-BI and CD36 to become rate-limiting under this dietary condition.  相似文献   

19.
20.
Low-density lipoprotein (LDL)-cholesteryl ester (CE) selective uptake has been demonstrated in nonhepatic cells overexpressing the scavenger receptor class B type I (SR-BI). The role of hepatic SR-BI toward LDL, the main carrier of plasma CE in humans, remains unclear. The aim of this study was to determine if SR-BI, expressed at its normal level, is implicated in LDL-CE selective uptake in human HepG2 hepatoma cells and mouse hepatic cells, to quantify its contribution and to determine if LDL-CE selective uptake is likely to occur in the presence of human HDL. First, antibody blocking experiments were conducted on normal HepG2 cells. SR-BI/BII antiserum inhibited (125)I-LDL and (125)I-HDL(3) binding (10 microg of protein/mL) by 45% (p < 0.05) and CE selective uptake by more than 85% (p < 0.01) for both ligands. Second, HepG2 cells were stably transfected with a eukaryotic vector expressing a 400-bp human SR-BI antisense cDNA fragment. Clone 17 (C17) has a 70% (p < 0.01) reduction in SR-BI expression. In this clone, (3)H-CE-LDL and (3)H-CE-HDL(3) association (10 microg of protein/mL) was 54 +/- 6% and 45 +/- 7% of control values, respectively, while (125)I-LDL and (125)I-HDL(3) protein association was 71 +/- 3% and 58 +/- 5% of controls, resulting in 46% and 55% (p < 0.01) decreases in LDL- and HDL(3)-CE selective uptake. Normalizing CE selective uptake for SR-BI expression reveals that SR-BI is responsible for 68% and 74% of LDL- and HDL(3)-CE selective uptake, respectively. Thus, both approaches show that, in HepG2 cells, SR-BI is responsible for 68-85% of CE selective uptake. Other pathways for selective uptake in HepG2 cells do not require CD36, as shown by anti-CD36 antibody blocking experiments, or class A scavenger receptors, as shown by the lack of competition by poly(inosinic acid). However, CD36 is a functional oxidized LDL receptor on HepG2 cells, as shown by antibody blocking experiments. Similar results for CE selective uptake were obtained with primary cultures of hepatic cells from normal (+/+), heterozygous (-/+), and homozygous (-/-) SR-BI knockout mice. Flow cytometry experiments show that SR-BI accounts for 75% of DiI-LDL uptake, the LDL receptor for 14%, and other pathways for 11%. CE selective uptake from LDL and HDL(3) is likely to occur in the liver, since unlabeled HDL (total and apoE-free HDL(3)) and LDL, when added in physiological proportions, only partially competed for LDL- and HDL(3)-CE selective uptake. In this setting, human hepatic SR-BI may be a crucial molecule in the turnover of both LDL- and HDL(3)-cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号