首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

2.
1,4 galactosyltransferase 1 ( 1,4GT1) synthesizes Gal 14GlcNAc groups in N-linked sugar chains of animal glycoproteins, which have been demonstrated to play an important role in many biological events, including sperm-egg interaction, cell migration and mammalian embryonic development. In this study, the mRNA level of 1,4GT1 was found to increase greatly during the 7721 hepatocarcinoma cells apoptosis induced by cycloheximide. Ricinus Communis Agglutinin-I staining indicated generous increase of Gal 14GlcNAc groups during apoptosis. Further study showed that the 7721 hepatocarcinoma cells transiently transfected with 1,4GT1 were more susceptible to the apoptosis induced by cycloheximide. The increased susceptibility was in accordance to the transfection concentration of 1,4GT1, which also led to the increased Gal 14GlcNAc groups on the transfected cell surface. All the observations suggested that 1,4GT1 and Gal 14GlcNAc groups might be associated with the apoptosis of human hepatocarcinoma cells.  相似文献   

3.
The transglycosylation reaction was done with a β-galactanase from Penicillium citrinum. The regioselectivity in the transglycosylation reaction was studied using soy bean arabinogalactan as a donor and mono- or disaccharide derivatives containing β-galactosyl residue as acceptors. We also synthesized oligosaccharides containing Galβ1→4Gal sequence such as Galβ1→4Galβ1→4Glc, Galβ1→4Galβ1→3GlcNAc, Galβ1→4Galβ1→4GlcNAc, Galβ1→4Galβ1→6GlcNAc, and Galβ1→4Galβ1→3GalNAc for use in the total synthesis of complex sugar chains.  相似文献   

4.
Summary Two specific -N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3GalNAc-Mucin to yield Gal3(GlcNAc6)GalNAc-Mucin and a 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3(GlcNAC6)GalNAc-mucin to yield GlcNAc3Gal3 (GlcNAc6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal1,3GalNAc chains was 0.53 µM; for UDP-N-acetylglucosamine, 12 µM; and for Gal 1,3GalNAc NO2ø, 4 mM. The activity of the 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal3GalNAc chains in Cowper's gland mucin glycoprotein.The best substrate for the partially purified 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal1,3(GlcNAc6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal1,3GalNAc side chains.The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with alkaline borohydride, isolated by gel filtration on Bio-Gel P-6 and characterized by methylation analysis and sequential digestion with exoglycosidases. The oligosaccharide products formed by the 6- and 3-glucosaminyltransferases were shown to be Gal3(GlcNAC6) GalNAc and GlcNAc3 Gal3(GlcNAC6)GalNAc respectively.Taken collectively, these results demonstrate that swine trachea epithelium contains two specific N-acetylglucosaminyltransferases which catalyze the initial branching and elongation reactions involved in the synthesis of O-linked oligosaccharide chains in respiratory mucin glycoproteins. The first enzyme a 6-glucosaminyltransferase converts Gal3GalNAc chains in mucin glycoproteins to Gal3(GlcNAc6)GalNAc chains. This product is the substrate for a second 3-glucosaminyltransferase which converts the Gal3(GlcNAc6)GalNAc chains to GlcNAc3Gal(GlcNAc6)GalNAc chains in the glycoprotein. The 3-glucosaminyltransferase did not utilize Gal3GalNAc chains as a substrate and this results in an ordered sequence of addition of N-acetylglucosamine residues to growing oligosaccharide chains in tracheal mucin glycoproteins.Abbreviations NeuNAc N-acetylneuraminic acid - GalNAcol N-acetylgalactosaminitol - CGMG Cowper's gland mucin glycoprotein - GalNAc-CGMG Cowper's gland mucin glycoprotein containing GalNAc side chains O-glycosidically linked to serine or threonine - Gal3GalNAc-CGMC Cowper's gland mucin glycoprotein containing Gal3GalNAc side chains - MES 2-(N-morpholino) Ethane Sulfonic acid - PBS Phosphate Buffered Saline  相似文献   

5.
A mouse monoclonal antibody (87.5) against Gal1-4Gal has been obtained after immunization with the disaccharide glycosidically coupled to a protein. The specificity was determined by studying its binding to a number of glycoconjugates and oligosaccharides.The antibody which was found to be highly specific for terminal Gal1-4Gal residues is a powerful tool for the detection of this structure in glycoproteins and glycolipids by immunochemicalin vitro methods. It is also useful forin vitro quantification of the free disaccharide.A thin layer chromatographic overlay assay using glycolipids and an immunoperoxidase technique is also described. The antibody 87.5 is used in this assay to identify human uroepithelium glycolipids with terminal Gal1-4Gal residues.Abbreviations Lactosylceramide Gal1-4GlcCer - globotriaosylceramide GbOse3-ceramide, Gal1-4Gal1-4GlcCer - globotetraosylceramide globoside, GbOse4-ceramide, GalNAc1-3Gal1-4Gal1-4GlcCer  相似文献   

6.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   

7.
Three sialosylated and three neutral glycosphingolipids sharing a common iso-neolacto core were isolated from porcine kidney cortex. They were purified by preparative HPTLC, and were characterized by partial exoglycosidase hydrolysis followed by thin layer chromatography and immunostaining with anti-Gal13Gal, anti-type 2 lactosamine and anti-Lewisx antibodies, methylation analysis, MALDI-TOF mass spectrometry and 1H-NMR spectroscopy. Among neutral glycolipids, one was a known structure, VI3VI3(Gal)2-iso-nLc8Cer, and two were novel structures differing by the number of Gal3Lewisx determinants: VI3VI3(Gal)2V3Fuc-iso-nLc8, and VI3VI3(Gal)2 V3V3(Fuc)2-iso-nLc8. The single Gal3Lewis x determinant was found on the 6-linked antenna. Among sialosylated glycolipids, two had been previously found in other species and tissues, VI3VI3(NeuAc)2-iso-nLc8, and VI3NeuAcVI3Gal-iso-nLc8. A novel structure was discovered presenting a Gal3Lewisx determinant on the 6-linked antenna and a N-acetylneuraminic acid on the 3-linked antenna, VI3NeuAcVI3GalV3Fuc-iso-nLc8. These results indicate that, in vivo, the porcine kidney 3fucosyltransferase synthesizes the Gal3Lewisx determinant, acting on the 6-linked before the 3-linked Gal3neolactosamine, and appears unable to synthesize the sialosylated Lewisx determinant on neolactoseries glycolipids.  相似文献   

8.
The α-Gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation   总被引:3,自引:0,他引:3  
Galili U 《Biochimie》2001,83(7):557-563
Many patients with failing organs (e.g., heart, liver or kidneys), do not receive the needed organ because of an insufficient number of organ donors. Pig xenografts have been considered as an alternative source of organs for transplantation. The major obstacle currently known to prevent pig to human xenotransplantation is the interaction between the human natural anti-Gal antibody and the alpha-gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R), abundantly expressed on pig cells. This short review describes the characteristics of anti-Gal and of the alpha-gal epitope, their role in inducing xenograft rejection and some experimental approaches for preventing this rejection.  相似文献   

9.
A new approach for the highly specific preparation of L-serine conjugates of lactosamine and Gal1-3GalNAc is described. Thus, the L-serine derivative of lactosamine Gal1-4GlcNAc-O-(N-Z)-Ser-OEt, was obtained from lactose, employing GlcNAc-O-(N-Z)-Ser-OEt as acceptor and a yeast -galactosidase as catalyst Galp 1-3GalNAc-O-(N-Alloc)-Ser-OMe was obtained from lactose, employing GalNAc-O-(N-Alloc)-Ser-OMe as acceptor and -galactosidase from bovine testes as catalyst.  相似文献   

10.
A deficiency in chondroitin N-acetylgalactosaminyltransferase-1 (ChGn-1) was previously shown to reduce the number of chondroitin sulfate (CS) chains, leading to skeletal dysplasias in mice, suggesting that ChGn-1 regulates the number of CS chains for normal cartilage development. Recently, we demonstrated that 2-phosphoxylose phosphatase (XYLP) regulates the number of CS chains by dephosphorylating the Xyl residue in the glycosaminoglycan-protein linkage region of proteoglycans. However, the relationship between ChGn-1 and XYLP in controlling the number of CS chains is not clear. In this study, we for the first time detected a phosphorylated tetrasaccharide linkage structure, GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate), in ChGn-1−/− growth plate cartilage but not in ChGn-2−/− or wild-type growth plate cartilage. In contrast, the truncated linkage tetrasaccharide GlcUAβ1–3Galβ1–3Galβ1–4Xyl was detected in wild-type, ChGn-1−/−, and ChGn-2−/− growth plate cartilage. Consistent with the findings, ChGn-1 preferentially transferred N-acetylgalactosamine to the phosphorylated tetrasaccharide linkage in vitro. Moreover, ChGn-1 and XYLP interacted with each other, and ChGn-1-mediated addition of N-acetylgalactosamine was accompanied by rapid XYLP-dependent dephosphorylation during formation of the CS linkage region. Taken together, we conclude that the phosphorylated tetrasaccharide linkage is the preferred substrate for ChGn-1 and that ChGn-1 and XYLP cooperatively regulate the number of CS chains in growth plate cartilage.  相似文献   

11.
Monoclonal antibodies were prepared against the trisaccharide Gal1-3Gal1-4GlcNAc, a sequence which occurs on the surface of Ehrlich ascites tumor cells as well as in thyroglobulin, laminin and a variety of other proteins. This was accomplished by immunizing BALB/c mice with the fraction of Ehrlich cell membrane glycoproteins obtained by affinity chromatography on aGriffonia simplicifolia I (GS I) column which selectively binds -d-galactosyl-terminated structures. Detection of Gal1-3Gal1-4GlcNAc-specific antibodies was accomplished by employing glycoproteins containing the trisaccharide sequence; fusion with spleen cells from an immunized mouse was accomplished in the presence of polyethylene glycol (PEG1500). An enzyme-linked immunosorbent assay (ELISA) system was used to identify two clones (2.10G and 6.8E), which recognized the desired trisaccharide conjugate. These clones also recognized a thyroglobulin fraction isolated by GS I affinity chromatography and murine laminin, both of which possess the Gal1-3Gal1-4GlcNAc sequence. Inhibition of antibody-trisaccharide reactivity, examined employing an ELISA assay, revealed that two trisaccharides, Gal1-3Gal1-4GlcNAc/Glc, were the best inhibitory haptens; Gal1-4GlcNAc (LacNAc), Gal1-3Gal and Gal1-4Glc (lactose) were poor inhibitors. Indirect immunofluorescence staining of unfixed Ehrlich cells using the monoclonal antibody at 4° C revealed fluorescence over the entire cell surface. Indirect immunogold labeling of semithin and ultrathin sections of aldehyde fixed and Lowicryl K4M-embedded Ehrlich cells resulted in specific labeling of the cell surface and internal structure. Immunoblot analysis revealed that removal of the -galactosyl residues of laminin by -galactosidase abolished reactivity with the monoclonal antibodies. The availability of this antibody, which belongs to the IgM family of immunoglobulins, now makes possible the detection of this sugar sequence on cells and tissue sections, as well as on glycoproteins in solution.  相似文献   

12.
同种异体组织和器官移植物供体来源有限,使得异种移植再度成为移植领域的研究热点。异种移植的主要障碍是人体内存在的天然抗体与移植物表面含有α1,3半乳糖残基[Galα(1,3)Gal,αGal]的抗原结合,激活补体系统和炎症反应,导致超急性移植排斥反应(HAR)的发生,使移植物失活。除人类和旧世纪猴外,其它所有哺乳动物的体内都含有αGal抗原,该抗原是由一组具有Galα(1,3)Gal双糖末端的糖蛋白或糖脂组成的,它的形成依赖于α1,3半乳糖基转移酶(αGT)的催化。目前,针对αGal抗原克服超急性移植排斥反应的方法主要有如下几种:(1)酶处理去除内皮细胞表面的αGal抗原;(2)物理化学方法去除人体血浆中存在的特异性天然抗体;(3)基因工程方法改造表达催化αGal抗原形成的相关酶基因,从而影响该抗原的表达。  相似文献   

13.
Summary The syndrome of familial lymphedema (type Meige) with distichiasis was observed in father and son. The association with uvula bifida and submucous cleft of the palate is described for the first time.  相似文献   

14.
改造猪的器官移植给人类被认为是解决人类移植器官供不应求的可能方案,但由于猪和人在免疫学上的差异使移植到人体的猪的带血管器官很快被排斥掉,本文综述了近十年来对猪-人之间最重要的差异性抗原表位的研究进展.  相似文献   

15.
To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Gal1-3GalNAc-R(GlcNAc to GalNAc) 6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 6-GlcNAc-T) and CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase (EC 2.4.99.4; 3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 6-GlcNAc-T activity; core 2 6-GlcNAc-T from mucin secreting tissue (named core 2 6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAc1-6(GlcNAc1-3)GalNAc-R] and blood group I [GlcNAc1-6(GlcNAc1-3)Gal-R] branches; core 2 6-GlcNAc-T in leukemic cells (named core 2 -GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Gal1-3GalNAc-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. 3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Gal1-3GalNAc-Bn. Gal1-3(6-deoxy)GalNAc-Bn and 3-deoxy-Gal1-3GalNAc-Bn competitively inhibited core 2 6-GlcNAc-T and 3-sialyltransferase activities, respectively.Abbreviations AFGP antifreeze glycoprotein - AML acute myeloid leukemia - Bn benzyl - CML chronic myelogenous leukemia - Fuc l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - GlcNAc, Gn N-acetyl-d-glucosamine - HC human colonic homogenate - HO hen oviduct microsomes - HPLC high performance liquid chromatography - mco 8-methoxycarbonyl-octy - Me methyl - MES 2-(N-morpholino)ethanesulfonate - MK mouse kidney homogenate - onp o-nitrophenyl - PG pig gastric mucosal microsomes - pnp p-nitrophenyl - RC rat colonic mucosal microsomes - SA sialic acid - T transferase Enzymes: UDP-GlcNAc:Gal1-3GalNAc-R (GlcNAc to GalNAc) 6-N-acetylglucosaminyltransferase,O-glycan core 2 6-GlcNAc-transferase, EC 2.4.1.102; CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase,O-glycan 3-sialic acid-transferase, EC 2.4.99.4.  相似文献   

16.
Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in 1–2 linkage to terminal Gal of type 3 (Gal1–3GalNAc) acceptors, and in 1–3 linkage to GlcNAc of type 2 (Gal1–4GlcNAc) acceptors. The 1–2 fucosyltransferase was active with Gal1–3GalNAc1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml–1) and Gal1–3GalNAc (K m=20 mM,V max=2.1 mU ml–1), whereas the 1–3 fucosyltransferase was active with Gal1–4GlcNAc (K m=23 mM,V max=1.1 mU ml–1). The products formed from Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fuc1–2Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4(Fuc1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.Abbreviations 2Fuc-T 1–2 fucosyltransferase - 3Fuc-T 1–3 fucosyltransferase - MeO-3Man 3-O-methyl-D-mannose - MeO-3Gal 3-O-methyl-D-galactose  相似文献   

17.
18.
Immunogold labeling was used to study the distribution of (1 → 3)-β-glucans and (1 → 3, 1 → 4)-β-glucans in the rice grain during cellularization of the endosperm. At approximately 3–5 d after pollination the syncytial endosperm is converted into a cellular tissue by three developmentally distinct types of wall. The initial free-growing anticlinal walls, which compartmentalize the syncytium into open-ended alveoli, are formed in the absence of mitosis and phragmoplasts. This stage is followed by unidirectional (centripetal) growth of the anticlinal walls mediated by adventitious phragmoplasts that form between adjacent interphase nuclei. Finally, the periclinal walls that divide the alveoli are formed in association with centripetally expanding interzonal phragmoplasts following karyokinesis. The second and third types of wall are formed alternately until the endosperm is cellular throughout. All three types of wall that cellularize the endosperm contain (1 → 3)-β-glucans but not (1 → 3, 1 → 4)-β-glucans, whereas cell walls in the surrounding maternal tissues contain considerable amounts of (1 → 3, 1 → 4)-β-glucans with (1 → 3)-β-glucans present only around plasmodesmata. The callosic endosperm walls remain thin and cell plate-like throughout the cellularization process, appearing to exhibit a prolonged juvenile state. Received: 7 January 1997 / Accepted: 11 February 1997  相似文献   

19.
胁迫应答基因的转录激活是细胞应答胁迫作用的关键步骤。转录激活因子与启动子顺式作用元件结合是胁迫应答基因转录激活的关键环节。进化保守的Gal4是半乳糖代谢相关基因的转录激活因子。酵母Gal4通过其N端的DNA结合结构域识别并结合启动子UAS,通过其C端的激活结构域与转录因子作用,起始RNA聚合酶Ⅱ复合体的组装和转录。该过程不仅受转录调控因子Gal80和Gal3的调节,还与Gal4二聚体的形成有关。概述了酵母半乳糖代谢相关基因转录激活因子Gal4的研究进展。  相似文献   

20.
在考虑以猪器官作为供体对人进行异种器官移植时,α1,3半乳糖被认为是引起超急性免疫排斥的主要异种抗原.人们建立了各种方法以降低猪α1,3半乳糖水平,但是也有可能筛选得到在自然情况下α1,3半乳糖表达水平比较低的猪.为了研究在正常猪单个核细胞中α1,3半乳糖浓度分布的差异,利用鸡免疫球蛋白Y(ck-IgY)抗体通过流式细胞分析对正常猪的α1,3半乳糖水平的差异进行检测.取3~8周龄猪的全血,用肝素抗凝处理后经密度梯度离心获取外周血单个核细胞(PBMCs),与FITC标记的ck-IgY(10μg/ml)孵育,经流式细胞仪检测α1,3半乳糖水平.结果显示,相同周龄猪的α1,3半乳糖水平可有0.4~2.6倍差异,同一猪的水平在不同周龄有1.3~5.6倍差异.ck-IgY的特异性由棉籽糖和α1,3半乳二糖测定,棉籽糖(100μmol/L)可抑制70%ck-IgY结合,而α1,3半乳二糖(6.25μmol/L)可完全取消ck-IgY的结合,说明ck-IgY与猪单个核细胞是特异性结合.上述发现说明,ck-IgY是检测猪单个核细胞表面α1,3半乳糖的特异试剂,不同猪或是同一猪在不同时间的α1,3半乳糖水平有着明显的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号