首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于网络药理学探讨溪黄草黄酮类成分对酒精性肝病(alcoholic liver disease, ALD)的作用机制。通过文献、PubChem、TCMSP、PharmMapper数据库收集成分及预测靶点,利用UniProt数据库规范靶点。再运用GeneCards数据库获取ALD疾病靶点,并经Venny2.1.0获得交集靶点。蛋白相互作用的PPI网络由STRING数据库构建,接着通过DAVID数据库对交集靶点进行GO功能与KEGG通路富集分析。溪黄草黄酮类成分-靶点-通路的作用网络由Cytoscape3.7.0构建,最后对核心靶点进行分子对接验证。本文共收集溪黄草中12种黄酮类成分,这些成分涉及172个与ALD相关的靶点,筛选24个核心靶点。GO富集显示52条生物过程、24条细胞成分、16条分子功能,主要涉及转录调控、细胞凋亡调节、血管内皮生长因子、NF-κB调节、脂质稳态、DNA损伤凋亡等生物过程;KEGG富集27条通路,主要涉及PI3K/Akt信号、FoxO信号、P53信号等关键通路;分子对接显示HSP90AA1、VEGFA、CCND1核心靶点与活性成分有良好的结合效应。综上,本文揭示溪黄草黄酮类成分作用于多靶点,参与多通路的调控发挥治疗ALD的作用机制,为进一步验证溪黄草黄酮类成分治疗ALD的相关靶点及通路提供依据。  相似文献   

2.
核转录因子-κB(nuclear factor-κB,NF-κB)是一种能控制DNA的转录、细胞因子合成以及细胞存活时间的蛋白复合物,是机体应对免疫、应激、细胞凋亡和分化的关键调节因子。缺氧导致的炎症反应一直是医学研究领域的热点,其研究成果可以为临床心血管疾病、炎性肠病、类风湿关节炎、器官移植等多种疾病提供基因水平的诊断依据和新的治疗靶点。NF-κB信号通路是如何调控缺氧导致的炎症被广泛关注,仍有许多问题亟待解决。本文重点阐述了NF-κB转录因子家族及生物作用、缺氧炎症过程中NF-κB与缺氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)的关系及NF-κB信号通路与缺氧的炎症基因表达。这些研究可以为临床诊断、治疗提供基因水平的辅助和新的治疗方向。  相似文献   

3.
糖尿病肾病是由于糖尿病糖代谢异常为主因所致的肾小球硬化并伴尿蛋白含量超过正常的疾病,它是糖尿病引起的严重和危害性最大的一种慢性并发症。对糖尿病肾病的防御与治疗仍是临床研究的热点之一。NF-κB信号通路是一条由核因子NF-κB及其受体、免疫调节蛋白等组成的高度保守的信号通路,参与免疫反应、炎症反应、细胞凋亡、肿瘤发生等多种生物学进程。作为参与糖尿病肾病的主要信号通路之一,激活NF-κB信号通路能进一步扩大糖尿病肾病的炎症反应。因此本文就NF-κB激活与DN炎症反应的关系以及NF-κB的抗炎策略做一综述,为糖尿病肾病的预防和治疗提供科学数据和理论依据。  相似文献   

4.
5.
基于网络药理学和分子对接技术分析六味地黄丸治疗骨质疏松症(osteoporosis, OP)的作用机制。通过TCMSP数据库进行六味地黄丸潜在化学成分获取和靶点预测,运用TTD、Disgenet、GeneCards数据库预测筛选与骨质疏松症相关的基因,利用Cytoscape 3.7.0软件建立中药-化合物-靶点-疾病可视化网络,借助String数据平台进行蛋白互作网络构建,运用Metascape数据库进行GO及KEGG作用通路分析。利用AutoDock 4.2.6软件对筛选所得化学成分与核心靶点进行分子对接验证。结果表明:六味地黄丸治疗骨质疏松症的有效成分69个,靶点125个,潜在有效成分主要包括槲皮素、豆甾醇、山柰酚、薯蓣皂苷元等,核心靶点有AKT1、IL6、VEGFA、TP53、TNF等32个;六味地黄丸通过关键靶点活化缺氧诱导因子1信号通路(HIF-1)、肿瘤坏死因子(TNF)信号通路、磷酸肌醇3激酶(PI3k-Akt)信号通路、Toll样受体信号通路等通路,涉及RNA聚合酶II启动子转录的调控以及细胞凋亡的调控,细胞对缺氧、脂多糖、肿瘤坏死因子的反应、炎症应答等生物过程来治疗OP。分子对接结果显示,槲皮素、谷甾醇、山柰酚等与AKT1、TP53、IL6等关键靶点有着较好的结合活性。六味地黄丸通过调节骨代谢、调控炎症反应、细胞增殖分化等来预防和治疗OP,具有多成分、多靶点、多通路的作用特征,为进一步的基础研究及临床应用提供了新的思路和线索。  相似文献   

6.
为探究雷公藤干预结缔组织相关间质性肺疾病(CTD-ILD)的分子机制。运用网络药理学的方法,通过TCMSP数据库挖掘雷公藤的主要化学成分及作用靶点,利用Genecards、OMIM、DrugBank数据库获取CTD-ILD相关靶点,利用String平台进行蛋白质相互作用分析,构建PPI网络并挖掘网络中潜在的蛋白质功能模块,然后采用Metascape进行GO及KEGG富集分析,利用Cytoscape3.8.0软件构建"雷公藤成分-CTD-ILD-信号通路"网络,最后通过AutoDock Vina进行分子对接。通过分析得到雷公藤干预CTD-ILD的靶点共80个,核心成分为山奈酚、雷公藤内酯醇、川陈皮素、β-谷甾醇等,核心靶点有PTGS2、JUN、MAPK8、RELA、SCN5A、TNF等。GO和KEGG富集分析显示,IL17信号通路、Toll样受体信号通路、TNF信号通路、HIF-1信号通路、FoxO信号通路、Cancer信号通路等为雷公藤干预CTD-ILD的主要通路,涉及炎症,氧化应激,细胞凋亡及癌症等多个生物过程。分子对接结果亦显示,分子亲和力小于-7 kcal/mol占总数的62.5%,其中5次化合物的预测值超过原配体。综上,本研究初步揭示了雷公藤通过多成分、多靶点、多通路作用机制干预CTD-ILD的分子机制,并经分子对接予以验证,为临床应用雷公藤治疗CTD-ILD提供了理论依据。  相似文献   

7.
NF-κB与持久炎症及肿瘤发生关系   总被引:4,自引:0,他引:4  
NF-κB是一种序列特异性转录因子.早先的研究证明其主要功能是参与炎症反应和天然免疫应答.最近的研究发现,某一部位的持久炎症反应将导致NF-κB信号通路组成性持续激活,导致NF-κB靶基因的异常表达,这些基因的异常表达往往与肿瘤的发生、转移、组织浸润以及肿瘤细胞的抗凋亡作用相关.因此,将NF-κB作为靶向分子,抑制其活性已成为肿瘤防治的研究热点和新的思路.  相似文献   

8.
基于网络药理学探讨大黄治疗阿尔茨海默病(AD)的作用机制。借助TCMSP数据库及Uniprot数据库筛选出大黄有效成分及靶点基因。通过Drugbank、Dis Ge NET和TTD数据库筛选出阿尔茨海默病的靶点基因;成分靶点与疾病靶点映射后使用Cytoscape 3.7.1软件构建药物有效成分-靶点蛋白相互作用网络,使用String数据库绘制靶点蛋白-靶点蛋白相互作用网络;对靶点蛋白利用Metascape数据库进行GO分析和KEGG分析,最后采用MTT实验、ELISA法、比色法和荧光实时定量PCR对网络药理学主要分析结果进行验证。研究共筛选出大黄的有效成分17个,对应靶点276个,与阿尔茨海默病相关靶点共107个,KEGG相关信号通路前10条,GO分析前20个生物学过程。细胞实验证实了大黄能有效提高PC12细胞的细胞存活率及抑制PC12细胞的炎症反应、细胞凋亡、氧化应激反应,并促进PI3K/Akt/Nrf2/HO-1信号通路的激活,下调NF-κB信号通路。大黄主要是通过抗炎、抗凋亡、抗氧化应激等对阿尔茨海默病产生重要的治疗作用,为后续临床治疗阿尔茨海默病提供新的思路。  相似文献   

9.
本文采用网络药理及分子对接技术探究槐耳治疗胃癌的作用机制。通过文献检索、HERB、SwissADME数据库筛选槐耳的活性成分,SwissTargetPrediction预测槐耳的作用靶点。在GeneCards、OMIM、PharmGkb、TTD、DrugBank数据库获取GC疾病靶点,用Cytoscape软件建立“药物成分-靶点网络”并进行分析。将槐耳活性成分靶点与GC靶点进行交集后,利用String数据库及Cytoscape软件构建蛋白互作关系网络(PPI)并分析,得出核心靶点。采用R4.3.1软件对槐耳治疗胃癌的交集靶点进行GO功能富集分析和KEGG通路富集分析,最后运用AutoDock Tools软件对主要成分和核心靶点进行分子对接验证。结果发现,最终获得槐耳活性成分22个、成分靶点共437个、疾病靶点1 216个、药物-疾病交集靶点117个;槐耳治疗GC的核心基因主要涉及AKT1、CCND1、EGFR、ESR1、HSP90AA1、IL1B、MAPK8、MMP9、PTGS2、SRC、STAT3等,主要作用于内分泌抵抗、IL-17、TNF、FoxO等信号通路。结果表明,槐耳可能通过...  相似文献   

10.
白介素-17(interleukin-17,IL-17)是一种主要由T辅助细胞17分泌的促炎细胞因子。近年来的研究发现IL-17的异常表达与多种恶性肿瘤的发生发展有密切关系。NF-κB、Akt及JAK2/STAT3等信号分子参与IL-17介导的信号通路。本文对IL-17在恶性肿瘤进程中的作用及相关机制进行综述。  相似文献   

11.
Mitochondrial DNA depleted (ρ0) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ+ HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ0 cells compared to ρ+ HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ+ HSF, but this response was substantially decreased in ρ0 HSF. Suppression of the IKK–NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2–STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ+ HSF. Inhibitory antibodies against IL6, the main activator of JAK2–STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ0 HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6–JAK2–STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.  相似文献   

12.
Suppressor of cytokine signaling proteins (SOCS) are a family of intracellular cytokine inducible proteins, consisting of eight members. They are involved in the complex control of the inflammatory response through their actions on various signaling pathways, including the JAK/STAT and NF-κB pathways. A series of studies has shown that SOCS proteins are involved in the regulation and progression of immune responses in microglia cells. The accumulated data suggest that modulation of SOCS expression could be a target for drug development aimed at controlling inflammation in the brain. This review focuses on the current understanding of SOCS proteins involvement in inflammation-based neurodegenerative diseases and their role as therapeutic targets in future approaches.  相似文献   

13.
T cells devoid of tumor necrosis factor receptor associated factor-3 (Traf3) exhibit decreased proliferation, sensitivity to apoptosis, and an improper response to antigen challenge. We therefore hypothesized that TRAF3 is critical to the growth of malignant T cells. By suppressing TRAF3 protein in different cancerous T cells, we found that anaplastic large cell lymphoma (ALCL) cells require TRAF3 for proliferation. Since reducing TRAF3 results in aberrant activation of the noncanonical nuclear factor-κB (NF-κB) pathway, we prevented noncanonical NF-κB signaling by suppressing RelB together with TRAF3. This revealed that TRAF3 regulates proliferation independent of the noncanonical NF-κB pathway. However, suppression of NF-κB-inducing kinase (NIK) along with TRAF3 showed that high levels of NIK have a partial role in blocking cell cycle progression. Further investigation into the mechanism by which TRAF3 regulates cell division demonstrated that TRAF3 is essential for continued PI3K/AKT and JAK/STAT signaling. In addition, we found that while NIK is dispensable for controlling JAK/STAT activity, NIK is critical to regulating the PI3K/AKT pathway. Analysis of the phosphatase and tensin homolog (PTEN) showed that NIK modulates PI3K/AKT signaling by altering the localization of PTEN. Together our findings implicate TRAF3 as a positive regulator of the PI3K/AKT and JAK/STAT pathways and reveal a novel function for NIK in controlling PI3K/AKT activity. These results provide further insight into the role of TRAF3 and NIK in T cell malignancies and indicate that TRAF3 differentially governs the growth of B and T cell cancers.  相似文献   

14.
15.
Melanoma is the most lethal form of human skin cancer. However, only limited chemotherapy is currently available for the metastatic stage of the disease. Since chemotherapy, radiation and sodium arsenite treatment operate mainly through induction of the intrinsic mitochondrial pathway, a strongly decreased mitochondrial function in metastatic melanoma cells, could be responsible for low efficacy of the conventional therapy of melanoma. Another feature of metastatic melanoma cells is their proinflammatory phenotype, linked to endogenous expression of the inflammatory cytokines, such as TNFα IL6 and IL8, their receptors, and constitutive NF-κB- and STAT3-dependent gene expression, including cyclooxygenase-2 (PTGS2/COX2). In the present study, we treated melanoma cells with immunological (monoclonal antibody against TNFα or IL6), pharmacological (small molecular inhibitors of IKKβ-NF-κB and JAK2-STAT3) or genetic (specific RNAi for COX-2) agents that suppressed the inflammatory response in combination with induction of apoptosis via TRAIL. As a result of these combined treatments, exogenous TRAIL via interactions with TRAIL-R2/R1 strongly increased levels of apoptosis in resistant melanoma cells. The present study provides new understanding of the regulation of TRAIL-mediated apoptosis in melanoma and will serve as the foundation for the potential development of a novel approach for a therapy of resistant melanomas.  相似文献   

16.
17.
18.
Elevated Nuclear Factor κB (NF-κB) levels have been reported in multiple myeloma cells derived from patients relapsing after chemotherapy. In the search of an in vitro a model with molecular features similar to relapsing lesions, we focused our attention on an IL-6 autocrine human myeloma cell line (U266), characterized by apoptosis resistance due to up-regulation of two constitutive signaling pathways: NF-κB and STAT-3. NF-κB activity was inhibited with proteasome inhibitory agents, such as PS-341 and Withaferin A, with an IKK inhibitor (Wedelolactone) or with the adenoviral vector HD IκBαmut-IRES-EGFP encoding a mutant IκBα protein, resistant to proteasomal degradation. We observed that the NF-κB intracellular dislocation at the beginning of the treatment affected therapeutic effectiveness of PS-341, Withaferin A and Wedelolactone; interestingly, the adenoviral vector was highly effective in inducing apopotosis even with NF-κB being predominantly nuclear at the time of infection. We also observed that U266 treated with the Interleukin-6 antagonist Sant7 exhibited reduced STAT3 activity and preferential cytoplasmic NF-κB location; moreover they became capable of undergoing apoptosis mainly from the G1 phase. Adenoviral vector treated U266 have NF-κB localized completely in the cytoplasm and also showed down-regulation of nuclear phospho STAT-3. Finally, combined targeting of NF-κB and STAT3 signaling pathways was the most effective treatment in inducing apoptosis. These findings suggest that combined NF-κB κB and STAT3 targeting warrants further investigations in other apoptosis resistant MM cell lines as well as in suitable MM animal models.  相似文献   

19.
Pharmacological targeting of inflammation through STAT3 and NF-κB signaling pathways is, among other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in transducing NF-κB intracellular signaling pathways, we tested whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2 inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphorylation and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory microenvironments and within experimental vascularizing tumors, these mechanistic observations support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable MSC to be active participants within inflamed tissues.  相似文献   

20.
Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(-595/-628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号