首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of winter cold in the termination of diapause was investigated with regards to TIME and PIN in eggs of the silkworm Bombyx mori. TIME (time interval measuring enzyme) is an ATPase that can measure time intervals by exhibiting a transitory burst of activation of the enzyme in accordance with diapause development, which requires cold for resumption of embryonic development in the silkworm. The possible timer function of TIME comprises a built‐in mechanism in the protein structure. TIME is a metallo‐glycoprotein consisting of 156 amino acid residues with a unique sequence in the N‐terminal region to which a sugar chain is attached. PIN (peptidyl inhibitory needle) inhibits the ATPase activity of TIME. PIN is not a simple enzyme inhibitor, but holds the timer by forming a time‐regulatory complex with TIME. The carbohydrate moiety of TIME is essential for the assembly of a high‐affinity PIN‐binding site within the timer motif of the TIME structure. The binding interaction between TIME and PIN was much tighter (nearly 1000 times) at 25°C than that at 4°C, as measured by fluorescence polarization. Because the logEC50 at 4°C was approximately 7 nmol/L, PIN must dissociate from TIME at the physiological concentration of TIME in eggs in the winter cold. Based on the results of our study, we propose that the dissociation of the TIME–PIN complex in the winter cold cues a series of conformational changes of TIME, ultimately reaching the active form of ATPase which in turn causes the completion of diapause development and initiates new developmental programs.  相似文献   

2.
The TIME (Time Interval Measuring Enzyme) ATPase measures time intervals in accordance with diapause development, which indispensably requires cold for resumption of embryonic development in the silkworm (Bombyx mori). The PIN (Peptidyl Inhibitory Needle) peptide regulates the time measurement function of TIME. In the present study we investigated the interaction between TIME and PIN in order to address the mechanism of diapause development. When TIME was isolated from eggs later than 12 days after oviposition, transient bursts of ATPase activity occurred 18h after isolation of TIME, and the younger the eggs and pupal ovaries from which TIME was isolated, the earlier the bursts of ATPase activity appeared. However, no interval-timer activation of ATPase occurred in ovaries earlier than 6 days after pupation. Similar patterns of ATPase activity occurred in test tubes after mixing TIME with PIN. The shorter the time PIN was mixed with TIME, the earlier the ATPase activity appeared. The timer may be built into the protein conformation of TIME, and PIN (which is present in ovaries beginning 6 days after pupation) appears able to alter this timer conformation through pupal stages to laid eggs. We discuss the possible mechanism of diapause development in relation to the timer mechanism of TIME.  相似文献   

3.
We investigated the mode of action of winter cold in the termination of diapause by investigating Time-Interval-Measuring Enzyme (TIME). First, we determined the period of cold required for the completion of diapause development. Synchronously developing egg batches of a pure strain (C108 Bombyx mori silkworm) were used to minimize variations in hatching time. Hatching occurred with only 18 days chilling at 5 degrees C when the incubation at 25 degrees C after the chilling was elongated. The 18-day period was much shorter than we expected; diapause in B. mori is known to terminate completely with about 100 days of chilling. Even in such a short period of chilling, no sporadic hatching occurred. Moreover, we determined that a temperature-insensitive stage, which we called "Neboke", followed the short cold-requiring stage. Thus, the stage of diapause development was demarcated from other stages of diapause. While the length of diapause development was elongated when chilling was delayed after oviposition, the Neboke stage length was invariant. Cold evidently exerts its effect only on diapause development. When TIME was purified from eggs and chilled in test tubes, a transitory burst of its ATPase activity occurred at a time equivalent to shortly before the completion of diapause development; this was an interval-timer activation. The mechanism by which cold activates TIME to measure the time interval may help explain in biochemical terms the insect's adaptation to its seasonal environments.  相似文献   

4.
家蚕滞育性卵盐酸处理的靶物质   总被引:11,自引:1,他引:10  
酯酶A4(EA4)是家蚕卵的滞育生物钟蛋白质。从家蚕C108品种产下后48 h的滞育性卵和盐酸活化处理卵分离纯化出EA4酶蛋白,使用合成的EA4活性多肽抑制因子PIN(氨基酸结构:SIFMTKQHSQ DDIIQHPLDY VEQQIHQQKQ KLQKQTLN),研究了PIN对EA4酶蛋白的作用机制。滞育性卵的EA4酶蛋白和PIN在25℃混合24h后,用矩阵辅助激光解吸离子质谱法,检测到了二者的结合体,该结合体在盐酸处理后消失;盐酸活化处理蚕卵的EA4酶蛋白和合成PIN之间没有出现这种结合体。体外25℃,滞育性蚕卵EA4的ATPase特征性活性峰在6.5 h后出现,而盐酸活化处理蚕卵的EA4在1.5 h后出现活性峰值。盐酸处理可能通过解除PIN对EA4的抑制作用,在短时间内激活EA4酶蛋白,从而活化滞育性蚕卵。  相似文献   

5.
The effects of acute and developmental temperature on maximum burst swimming speed, body size, and myofibrillar ATPase activity were assessed in tadpoles of the Pacific tree frog, Hyla regilla. Tadpoles from field-collected egg masses were reared in the laboratory at 15 degrees (cool) and 25 degrees C (warm). Body size, maximum burst swimming speed from 5 degrees to 35 degrees C, and tail myofibrillar ATPase activity at 15 degrees and 25 degrees C were measured at a single developmental stage. Burst speed of both groups of tadpoles was strongly affected by test temperature (P<0. 001). Performance maxima spanned test temperatures of 15 degrees -25 degrees C for the cool group and 15 degrees -30 degrees C for the warm group. Burst speed also depended on developmental temperature (P<0.001), even after accounting for variation in body size. At most test temperatures, the cool-reared tadpoles swam faster than the warm-reared tadpoles. Myofibrillar ATPase activity was affected by test temperature (P<0.001). Like swimming speed, enzyme activity was greater in the cool-reared tadpoles than in the warm-reared tadpoles, a difference that was significant when assayed at 15 degrees C (P<0. 01). These results suggest a mechanism for developmental temperature effects on locomotor performance observed in other taxa.  相似文献   

6.
In Eobiana engelhardti subtropica, early laid eggs reach the diapause stage in early autumn. For long periods before winter, the eggs are exposed to temperatures higher than their theoretical lower threshold for development. In contrast, late-laid eggs cannot reach their diapause stage before winter. Our study showed that E. e. subtropica copes with these difficulties via the thermal response involving embryonic diapause. In this katydid, the almost fully developed embryo undergoes an obligatory diapause. When diapause eggs were maintained at a temperature of 20 degrees C or higher, diapause persisted for a long time. Diapause was effectively terminated by temperatures ranging from 1 to 11 degrees C, and hatching occurred successfully at temperatures from 11 to 15 degrees C. In addition to the chilling temperature, pre-chilling temperature modified diapause intensity and hatching time. Diapause eggs hatched earlier after chilling when the pre-chilling temperature was lower, within a range of 14.5-25 degrees C. Thus, the low-temperature requirement for diapause termination prevents early laid eggs from untimely hatching in autumn, and low temperatures before and during winter decrease diapause intensity and shorten the hatching time in the following spring. When eggs were chilled before diapause, they tolerated chilling and averted diapause. Thus, even if eggs encounter low temperatures before diapause, they can hatch in the following spring.  相似文献   

7.
Fresh eggs obtained from female Nematospiroides dubius were cultured at temperatures ranging from 5 degrees C to 33 degrees C. Hatching occurred between 5 degrees C and 30 degrees C; third stage larvae were obtained between five degrees C and 25 degrees C. The minimum time required from hatching to development to the third stage was 3-6 days (at 20 degrees C) and the maximum was seven days (at 5 degrees C). Larvae cultured at higher temperatures were smaller than those cultured at lower ones.  相似文献   

8.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

9.
The adenosinetriphosphatase (ATPase) (EC 3.6.1.3) activity in Azotobacter vinelandii concentrates in the membranous R3 fraction that is directly associated with Azotobacter electron transport function. Sonically disrupted Azotobacter cells were examined for distribution of ATPase activity and the highest specific activity (and activity units) was consistently found in the particulate R3 membranous fraction which sediments on ultracentrifugation at 144 000 X g for 2 h. When the sonication time interval was increased, the membrane-bound ATPase activity could neither be solubilized nor released into the supernatant fraction. Optimal ATPase activty occurred at pH 8.0; Mg2+ ion when added to the assay was stimulatory. Maximal activity always occurred when the Mg2+:ATP stoichiometry was 1:1 on a molar ratio at the 5 mM concentration level. Sodium and potassium ions had no stimulatory effect. The reaction kinetics were linear for the time intervals studied (0-60 min). The membrane-bound ATPase in the R3 fraction was stimulated 12-fold by treatment wiTH TRypsin, and fractionation studies showed that trypsin treatment did not solubilize ATPase activity off the membranous R3 electron transport fraction. The ATPase was not cold labile and the temperature during the preparation of the R3 fraction had no effect on activity; overnight refrigeration at 4 degrees C, however, resulted in a 25% loss of activity as compared with a 14% loss when the R3 fraction was stored overnight at 25 degrees C. A marked inactivation (although variable, usually about 60%) did occur by overnight freezing (-20 degrees C), and subsequent sonication failed to restore ATPase activity. This indicates that membrane reaggregation (by freezing) was not responsible for ATPase inactivation. The addition of azide, ouabain, 2,4-dinitrophenol, or oligomycin to the assay system resulted in neither inhibition nor stimulation of the ATPase activity. The property of trypsin activation and that ATPase activity is highest in the R3 electron transport fraction suggests that its probable functional role is in coupling of electron transport to oxidative phosphorylation.  相似文献   

10.
The conformations of the transitory intermediates of the myosin ATPase occurring during the hydrolytic cycle, enzyme without ligand, enzyme-substrate complex and two different forms of enzyme-product complex, have been characterized in terms of numbers and classes of reactive thiol groups based on incorporation of radioactively labeled alkylation reagent. The techniques employed allowed this to be done under steady-state conditions in the presence of high ligand concentrations on intact myosin from rabbit fast skeletal muscles at low ionic strength where the protein is in the gel state as it is in muscle. The binding of a divalent cation (Mg2+ or Ca2+) nucleotide complex exposes thiol-1 as well as thiol-2 groups. The long-lived ATPase intermediate occurring at temperatures above 10 degrees C adopts the same conformation with Mg2+ and Ca2+ ions. This intermediate does not protect the thiol-1 and thiol-2 groups but exposes a number of thiol-3 groups which seem to be located distant from the active site. The conformation of the intermediate prevailing in the presence of ATP changes with lowering temperature below 10 degrees C and is identical with that found in the presence of ADP at 0 degree C indicating a change in the rate-limiting step of the hydrolytic cycle. In the absence of divalent cations no such temperature-dependent change in conformation was observed. Evaluation of the activation entropies shows that the structure of the long-lived intermediate occurring above 10 degrees C in the presence of Mg2+ ions goes through a transformation from low to high order at around 20 degrees C. In the case of the monovalent-cation-stimulated ATPase a constant activation energy of around 70 kJ/mol, typical of many enzyme reactions, was found over the entire temperature range from 0--35 degrees C.  相似文献   

11.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

12.
We have investigated the steps in the actomyosin ATPase cycle that determine the maximum ATPase rate (Vmax) and the binding between myosin subfragment one (S-1) and actin which occurs when the ATPase activity is close to Vmax. We find that the forward rate constant of the initial ATP hydrolysis (initial Pi burst) is about 5 times faster than the maximum turnover rate of the actin S-1 ATPase. Thus, another step in the cycle must be considerably slower than the forward rate of the initial Pi burst. If this slower step occurs only when S-1 is complexed with actin, as originally predicted by the Lymn-Taylor model, the ATPase activity and the fraction of S-1 bound to actin in the steady state should increase almost in parallel as the actin concentration is increased. As measured by turbidity determined in the stopped-flow apparatus, the fraction of S-1 bound to actin, like the ATPase activity, shows a hyperbolic dependence on actin concentration, approaching 100% asymptotically. However, the actin concentration required so that 50% of the S-1 is bound to actin is about 4 times greater than the actin concentration required for half-maximal ATPase activity. Thus, as previously found at 0 degrees C, at 15 degrees C much of the S-1 is dissociated from actin when the ATPase is close to Vmax, showing that a slow first-order transition which follows the initial Pi burst (the transition from the refractory to the nonrefractory state) must be the slowest step in the ATPase cycle. Stopped-flow studies also reveal that the steady-state turbidity level is reached almost instantaneously after the S-1, actin, and ATP are mixed, regardless of the order of mixing. Thus, the binding between S-1 and actin which is observed in the steady state is due to a rapid equilibrium between S-1--ATP and acto--S-1--ATP which is shifted toward acto-S-1--ATP at high actin concentration. Furthermore, both S-1--ATP and S-1--ADP.Pi (the state occurring immediately after the initial Pi burst) appear to have the same binding constant to actin. Thus, at high actin concentration both S-1--ATP and S-1--ADP.Pi are in rapid equilibrium with their respective actin complexes. Although at very high actin concentration almost complete binding of S-1--ATP and S-1--ADP.Pi to actin occurs, there is no inhibition of the ATPase activity at high actin concentration. This strongly suggests that both the initial Pi burst and the slow rate-limiting transition which follows (the transition from the refractory to the nonrefractory state) occur at about the same rates whether the S-1 is bound to or dissociated from actin. We, therefore, conclude that S-1 does not have to dissociate from actin each time an ATP molecule is hydrolyzed.  相似文献   

13.
The Malachite Green method for determination of inorganic phosphate (Pi) (Itaya K. & Ui, M. (1966) Clin. Chim. Acta 14, 361-366) was modified to measure Pi in the range of 0.2-15 nmol per ml of ATPase reaction mixture. An ATPase reaction mixture is quenched with an equal volume of 0.6 M PCA; the supernatant after centrifugation is mixed with an equal volume of the Malachite Green/molybdate reagent containing 2 g of sodium molybdate, 0.3 g of Malachite Green and 0.5 g of Triton X-100 or Sterox SE in 1 liter of 0.7 M HCl, and the absorbance at 650 nm is then measured after a 35-40 min incubation at 25 degrees C. Owing to the high sensitivity and simplicity of the modified method, the slow time course of myosin ATP hydrolysis in the presence of Mg2+ and the size of initial phosphate burst can be determined accurately using relatively low concentrations of native myosin and its subfragment-1. The phosphate burst size varied with changes in pH, ionic strength, and temperature. A typical value was 0.8-0.9 mol per site in 0.1 M KCl, 10 mM MgCl2, pH 8.0 at 25 degrees C for fresh enzyme preparations.  相似文献   

14.
The hydrolysis of MgATP by actomyosin gel at low ionic strength is known to show two unusual features: (1) an Arrhenius plot with a shallow slope in the higher temperature range (35-16 degrees C) and a steep slope in the lower temperature range (16-0 degrees C); (2) a rate curve of hydrolysis that begins with a 'burst' and falls to a lower steady-state level. Both of these can now be interpreted in terms of a specific, relatively slow transformation in the gel (t 1/2 = 9 s at 25 degrees C), induced by the binding of MgATP to the active sites of the myosin filaments. In the rate curves, this transformation is reflected in the transition from the burst rate (catalyzed by the original gel) to the steady-state rate (catalyzed by the modified gel). Importantly, this transition does not occur to a significant extent at low temperatures. Thus, in the typical nonlinear Arrhenius plot, where steady-state rates are used, the shallow slope in the high temperature range is a property of the modified gel, whereas the steep slope at low temperatures is a property of the original gel. Consistent with this interpretation, when the burst rates (presumably due to the original gel) were used in the high temperature range (and when substrate inhibition of hydrolysis by high levels of MgATP was avoided), the Arrhenius plot was linear over the entire temperature range (40-0 degrees C); the steep slope of this plot gives a high apparent heat of activation (25-30 kcal), similar to that reported for actin-activated hydrolysis by the soluble subfragment, heavy meromyosin. It is the steady-state form of the gel at high temperatures that gives a low apparent heat of activation (6-10 kcal). It was found that the regulatory proteins with calcium activate hydrolysis by the original form but have no effect on the steady-state form of the gel. Oxygen exchange measurements made during the burst and steady state at 25 degrees C indicate that the mechanism of hydrolysis is essentially the same for both, but that there is a higher effective actin concentration around the myosin sites in the original form.  相似文献   

15.
Development, fecundity, and longevity of Colpoclypeus florus (Walker), a parasitoid of Adoxophyes orana (Fischer von R?slerstamm) (Lepidoptera: Tortricidae), were studied under laboratory conditions at different constant temperatures. Developmental time from egg to adult was inversely related to temperature and at 25 degrees C was 12.81 +/- 0.19 d. No adults emerged at 30 degrees C. The thermal units required for development from egg to adult were 232.56 +/- 19.5 degree-days. Female C. florus oviposited (mean +/- SEM) on average 30.7, 57.4, 46.6, and 34.1 eggs at 15, 17, 20, and 25 degrees C. respectively. Adult longevity was 11 +/- 1.25 d at 17, whereas it decreased to 4.5 +/- 0.4 at 25 degrees C. Honey significantly increased longevity for both males and females. The highest net reproductive rate was 30.739 at 17 degrees C, whereas the highest intrinsic rate of increase and the shortest doubling time occurred at 25 degrees C.  相似文献   

16.
Life table studies for the Angoumois grain moth, Sitotroga cerealella (Olivier), a pest on stored maize, Zea mays L., in West Africa, were conducted as part of the expansion of a mathematical simulation model that has been developed for two pests of stored maize. The effects of four temperatures (20, 25, 30, and 35 degrees C) and two relative humidity levels (44 and 80%) on developmental time, age-specific survivorship and fecundity, sex ratio, and intrinsic rate of natural increase (r(m)) of S. cerealella were investigated. Sex ratio was close to 1:1 at all temperatures and humidity. Minimum development time occurred close to 32 degrees C and 80% RH for both males and females, and developmental time of females was significantly shorter than that of males. Immature survivorship was highest between 25 and 30 degrees C and 80% RH and lowest at 35 degrees C under both humidity conditions. A similar low level was found at 20 degrees C and 44% RH. The greatest fecundity (124 eggs per female) occurred at 20 degrees C, 80% RH. The maximum r(m) value was 0.086 d(-1) at 30 degrees C and 80% RH, but the growth rate declined dramatically at 35 degrees C. If compared with the few other life table studies conducted on this species on maize in India and North America, some variation among the strains becomes evident. A common conclusion for the current study and previous ones is that optimal population development for S. cerealella occurs at approximately 30 degrees C and at high humidity.  相似文献   

17.
The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2,450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.  相似文献   

18.
The root-feeding flea beetle Longitarsus bethae Savini & Escalona, was introduced into South Africa as a candidate biological control agent for the noxious and invasive weed, Lantana camara L. As part of the study to predict the beetles' survival in its new range, the influence of climatic conditions on its egg development and reproductive performance were investigated in the laboratory. The threshold temperature (T degrees) and degree-days (DD) required for egg hatch were determined after exposing the eggs to various constant temperatures (12, 17, 22, 27 and 32 degrees C) in separate growth chambers. The DD required for egg hatch was 178.6, and the temperature threshold required for egg hatch was 11.3 degrees C. Survival of eggs varied from 27 to 56% at 32 and 17 degrees C, respectively, and was optimum between 17 and 25 degrees C. Oviposition was examined under high and low relative humidity (RH) regimes while egg hatch was determined at six RH levels, each maintained in a separate controlled growth chamber set at a constant temperature (25 degrees C). Whilst RH had no influence on oviposition, eggs were highly susceptible to aridity, and continuous exposure to relative humidity below 63% for more than three days was wholly lethal at 25 degrees C. Optimum egg hatch occurred at RH between 85 and 95% for up to 12 days. The effect of day length on oviposition and subsequent egg hatch was investigated under two photoperiod regimes. Neither oviposition nor subsequent egg hatch was influenced by photoperiod. The knowledge obtained will be useful for mass rearing as well as field release programmes for L. bethae.  相似文献   

19.
The effects of acute and long-term changes in temperature upon catalytic and calcium regulatory function of red (slow oxidative) and white (fast glycolytic) muscle from striped bass (Morone saxatilis) were determined. Acclimation to 5 degrees C or 25 degrees C had no significant effect on catalytic function (ATPase activity) or regulatory sensitivity (Ca++-activation) of myofibrils from either muscle type. Substantial differences between red and white muscle were found in the intrinsic thermal sensitivity of maximally-activated Mg++-Ca++ myofibrillar ATPase. Arrhenius plots of myofibrillar ATPase from white muscle show one significant breakpoint at 29 degrees C, with activation energies (Ea) of 2.3 and 23.4 kcal mole-1 at temperatures above and below this transition, respectively. Arrhenius plots of myofibrillar ATPase from red muscle show two transitions occurring at 22 and 9 degrees C, with Ea of 7.6 kcal mole-1 above 22 degrees C and 18.3 kcal mole-1 between 9 and 22 degrees C. Activation energies for myofibrils from red muscle increase substantially to approximately 107.3 kcal mole-1 below the 9 degrees C breakpoint. Differences in the intrinsic thermal sensitivity of red and white muscle catalytic function are apparently due to interaction of actomyosins and calcium regulatory proteins which are specific to each muscle type. The results suggest that capacity for sustained swimming in striped bass, which is powered exclusively by red muscle, will be severely impaired at cold temperature unless compensations occur above the level of contractile proteins.  相似文献   

20.
Fumigant activity of 34 commercial essential oils was assessed on female adults and eggs of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) at three temperatures (5, 15, and 25 degrees C). Common thyme, cinnamon, and lemongrass oils were equally effective on twospotted spider mite adults showing 85.8-100% mortality at 5 and 10 microl/liter air at 25 degrees C. At a lower temperature of 15 degrees C, lemongrass and peppermint resulted in > or =90% mortality of adults at 10 microl/liter air. Only lemongrass was relatively active at 5 microl/liter air, at 15 degrees C. At 5 degrees C, lemongrass and peppermint caused significantly higher adult mortality than controls but only at 10 microl/liter air. Common thyme oil showed the highest ovicidal activity at 5 microl/liter air at 25 degrees C. Among the main components of common thyme and lemongrass oils, citral was lethal to twospotted spider mite adults at all tested temperatures. Carvacrol, thymol, and citral caused the same inhibitory effects on the hatch of twospotted spider mite eggs at 25 degrees C. However, citral was more active than other compounds to twospotted spider mite eggs at 15 degrees C. Therefore, we conclude that citral has the best potential for development as a fumigant against twospotted spider mite on agricultural products harvested late in the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号