首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
姜目芭蕉群植物种子解剖学研究及其系统学意义   总被引:3,自引:0,他引:3  
研究了姜目芭蕉群代表植物象腿蕉属象腿蕉(Ensete glaucum)、旅人蕉属旅人蕉(Ravenala madagascariensis)与蝎尾蕉属Heliconia faranmansis?D6肿咏馄侍卣鳌=峁砻鳎笸冉段藜僦制ぃ制し只霰砥ぁ⒑癖谧橹赴褪赴悖赴瞿谇邢虮谟刖断虮谠龊瘢缓系闱哂泻系闶矣牒系愣眩谥制ち恢榭浊兄榭琢旌涂赘堑姆只榭琢煳涡停赘侵挥赡谥制は赴钩桑褐榭浊制ぱ由煨纬芍制昵唬和馀呷?层细胞:内胚乳细胞径向延长,细胞内充满淀粉粒。旅人蕉具假种皮,种皮分化出外种皮、中种皮和内种皮,外种皮细胞纵向延长,中种皮为7-9层切向延长的薄壁细胞,内种皮为石细胞型:合点区无合点室,内种皮在此出现缺口,缺口为整体轮廓呈喇叭形的近等径薄壁细胞群填充;珠孔区无珠孔领与孔盖的分化:外胚乳缺,内胚乳发达。蝎尾蕉属的Heliconia faranmansis?D6肿游藜僦制ぃ制の薹只墒闾寤闲∏揖断蜓映げ⑴帕形だ缸吹谋”谙赴钩桑褐榭锥酥制は蛲庋由欤纬衫嗨平浦肿拥闹指纷唇峁梗何蘅赘怯胫榭琢斓哂杏晒ば纬傻挠不牵缓系闱肼萌私断嗨疲煌馀呷樵?-4层细胞,细胞壁波浪形弯曲,内胚乳发达。综合作者对兰花蕉(Orchidanha chinensis)和前人对芭蕉群的种子解剖学研究结果,初步总结了芭蕉群种子解剖学特征及其进化式样,讨论了姜目芭蕉群四科种子解剖学特征的系统分类学意义。  相似文献   

2.
We present new comparative data on early floral development of Heliconia latispatha, an ecologically and horticulturally important tropical plant within the order Zingiberales. Modification of the six members of two androecial whorls is characteristic of Zingiberales, with a reduction in number of fertile stamen from five or six in the banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae) to one in Costaceae and Zingiberaceae and one-half in Marantaceae and Cannaceae. The remaining five infertile stamens in these later four families (the ginger families) are petaloid, and in Costaceae and Zingiberaceae fuse together to form a novel structure, the labellum. Within this developmental sequence, Heliconiaceae share with the ginger families the possession of an antisepalous staminode, a synapomorphy that has been used to place Heliconiaceae as sister to the ginger family clade. Here, we use epi-illumination light microscopy and reconstruction of serial sections to investigate the ontogeny of the Heliconia flower with emphasis on the ontogeny of the staminode. We compare floral development in Heliconia with that previously described for other species of Zingiberales. A comparison of floral structure and development across Zingiberales is presented to better understand the evolution of the flower in this charismatic group of tropical plants.  相似文献   

3.
Xyridaceae belongs to the xyrid clade of Poales, but the phylogenetic position of the xyrid families is only weakly supported. Xyridaceae is divided into two subfamilies and five genera, the relationships of which remain unclear. The development of the ovule, fruit and seed of Abolboda spp. was studied to identify characteristics of taxonomic and phylogenetic value. All of the studied species share anatropous, tenuinucellate and bitegmic ovules with a micropyle formed by the inner and outer integuments, megagametophyte development of the Polygonum type, seeds with a tanniferous hypostase, a helobial and starchy endosperm and an undifferentiated embryo, seed coat derived from both integuments with a tanniferous tegmen and a micropylar operculum, and fruits with a parenchymatous endocarp and mesocarp and a sclerenchymatous exocarp. Most of the ovule and seed characteristics described for Abolboda are also present in Xyris and may represent a pattern for the family. Abolboda is distinguished by the ovule type, endosperm formation and the number of layers in the seed coat, in agreement with its classification in Abolbodoideae. The following characteristics link Xyridaceae to Eriocaulaceae and Mayacaceae, supporting the xyrid clade: tenuinucellate, bitegmic ovules; seeds with a tanniferous hypostase, a starchy endosperm and an undifferentiated embryo; and a seed coat with a tanniferous tegmen. A micropylar operculum in the seeds of Abolboda is described for the first time here and may represent a synapomorphy for the xyrids. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 144–154.  相似文献   

4.
The development of the ovule, fruit and seed of Xyris spp. was studied to assess the embryological characteristics of potential taxonomic usefulness. All of the studied species have (1) orthotropous, bitegmic and tenuinucellate ovules, with a micropyle formed by both the endostoma and exostoma; (2) a cuticle in the ovules and seeds between the nucellus/endosperm and the inner integument and between the inner and outer integuments; (3) helobial, starchy endosperm; (4) a reduced, campanulate and undifferentiated embryo; (5) a seed coat formed by a tanniferous endotegmen, endotesta with thick‐walled cells and exotesta with thin‐walled cells; and (6) a micropylar operculum formed from inner and outer integuments. The pericarp is composed of a mesocarp with cells containing starch grains and an endocarp and exocarp formed by cells with U‐shaped thickened walls. The studied species differ in the embryo sac development, which can be of the Polygonum or Allium type, and in the pericarp, which can have larger cells in either endocarp or exocarp. The Allium‐type embryo sac development was observed only in Xyris spp. within Xyridaceae. Xyris also differs from the other genera of Xyridaceae by the presence of orthotropous ovules and a seed coat formed by endotegmen, endotesta and exotesta, in agreement with the division of the family into Xyridoideae and Abolbodoideae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 619–628.  相似文献   

5.
The haploid generation of flowering plants develops within the sporophytic tissues of the ovule. After fertilization, the maternal seed coat develops in a coordinated manner with formation of the embryo and endosperm. In the arabidopsis bsister (abs) mutant, the endothelium, which is the most inner cell layer of the integuments that surround the haploid embryo sac, does not accumulate proanthocyanidins and the cells have an abnormal morphology. However, fertility is not affected in abs single mutants. SEEDSTICK regulates ovule identity redundantly with SHATTERPROOF 1 (SHP1) and SHP2 while a role in the control of fertility was not reported previously. Here we describe the characterization of the abs stk double mutant. This double mutant develops very few seeds due to both a reduced number of fertilized ovules and seed abortions later during development. Morphological analysis revealed a total absence of endothelium in this double mutant. Additionally, massive starch accumulation was observed in the embryo sac. The phenotype of the abs stk double mutant highlights the importance of the maternal-derived tissues, particularly the endothelium, for the development of the next generation.  相似文献   

6.
Heeria argentea (tribe Rhoeae), a monotypic, dioecious tree, is endemic to the core area of the Cape Floristic Region. The mature exocarp consists of a uniseriate layer of palisade-like epidermal cells, interspersed with modified stomata. The mature endocarp sensu stricto develops solely from the inner epidermis. It is essentially two-layered and resembles the state in Protorhus longifolia. This endocarp is here proposed as a distinct fourth endocarpal subtype under the so-called Anacardium -type. The large, pachychalazal, recalcitrant seed develops from the single, anatropous, bitegmic, crassinucellate ovule. This ovule is characterized by an extensive chalaza, vascularization and Anacardiaceae-type hypostase. The pachychalazal seed coat contains abundant vascular bundles and a tanniniferous hypostase. The inner epidermis of the inner integument differentiates into an endotegmen. The contribution of the integuments towards seed coat development is negligible. Concerning characters of the disc in the female flower, the meso- and endocarp, as well as seed size, degree of pachychalazy, nutrient reserves (starch) in the chlorophyllous cotyledons and hypogeal germination, Heeria shows a very close phylogenetic relationship to Protorhus longifolia. However, fruit and seed structure clearly supports the taxonomic separation of Heeria from Ozoroa. Data also support the view that Heeria is a tropical relict, and the hypothesis that pachychalazy, greater seed size, as well as recalcitrant seed viability behaviour constitute ancestral seed character states. Pachychalazy is regarded as a functional adaptation for more efficient transfer of nutrients.  相似文献   

7.
Morphology and physiology of fruit and seed development were compared in Rhus aromatica and R. glabra (Anacardiaceae), both of which produce drupes with water-impermeable endocarps. Phenology of flowering/fruiting of the two species at the study site was separated by ∼2 mo. However, they were similar in the timetable and pattern of fruit and seed development; it took ∼2 mo and ∼1.5 mo for flowers of Rhus aromatica and R. glabra, respectively, to develop into mature drupes. The single sigmoidal growth curve for increase in fruit size and in dry mass of these two species differs from the double-sigmoidal one described for typical commercial drupes such as peach and plum. Order of attainment of maximum size was fruit and endocarp (same time), seed coat, and embryo. By the time fruits turned red, the embryo had reached full size and become germinable; moisture content of seed plus endocarp had decreased to ∼40%. The endocarp was the last fruit component to reach physiological maturity, which coincided with development of its impermeability and a seed plus endocarp moisture content of <10%. At this time, ∼50, 37, and 13% of the dry mass of the drupe was allocated to the exocarp plus mesocarp unit, endocarp, and seed, respectively. The time course of fruit and seed development in these two species is much faster than that reported for other Anacardiaceae, including Rhus lancea, Protorhus, and Pistacia.  相似文献   

8.
Abstract

Seed formation involves not only the embryo and endosperm development, but also the formation of a series of either ephemeral or non-ephemeral structures. In this article, we study several of those structures in Cytisus multiflorus and Cytisus striatus. The endosperm development is first nuclear and later cellular, except for the chalazal area, whose development is always nuclear. It generates, in the early developmental stages, a sac-like haustorium. As the seed develops, two structures seem to be closely related to nutrient mobilization to the embryo sac: on the one hand, a group of cells and a channel, located in the chalazal area and closely related between them and to the endosperm haustorium, which could be interpreted as a hypostase and on the other hand, an endothelium, derived from the inner integument, which later degenerates leaving no trace in the mature seed. All of these structures would be associated with the directionality of assimilates from ovule tissues to embryo sac. In mature seed and surrounding the embryo appears a unicellular layer of cells rich in proteins (aleurone layer), which is the origin of the outermost layer of the cellular endosperm. The seed coat is made up only of the outer integument.  相似文献   

9.
Vernonia anthelmintica (Linn.) Willd., tribe Vernonieae, family Compositae has been studied. The cypsela has dimorphic pappus, 20 longitudinal ribs (10 primary and 10 secondary), and two types of hairs developing from single epidermal cells on surface. Certain features of vasculature of floret observed in this taxon have been considered as intermediate between relatively primitive and highly advanced conditions known in the family. Others elucidate further that the ovary is bilocular with axile placentation at base in which region the ovule is attached, and unilocular with parietal placentation in the remaining portion, and also that the ovule possibly belongs to one of the two carpels, which alone is fertile, and is an organ morphologically double in nature. The pappus has been regarded as a longitudinally dismembered calyx tube. The tissue of the ovule outside nucellus differentiates into an endothelium, a periendothelial zone, and an outer zone. In the mature seed the thickned outer epidermis and remmants of a few subjacent layers form the outer zone, and endothelium redued to a pellicle, the inner zone of the seed coat. The jacket layer of the endosperm persists between the seed coat and the dicotyledonous, orthorrhizal embryo. The pericarp development resembles that of most other Compositae in an early differentiation of the ovary wall into two zones, and later breakdown of a major part of the inner zone. But it is quite characteristic in other respects, especially, the peripheral chin of firovascular bundles which forms its main mechanical zone.  相似文献   

10.
The exocarp sensu lato , which develops from the outer epidermis and adjacent parenchyma of the ovary wall, consists of collenchyma cells with a stomatous epidermis. The fleshy, parenchymatous mesocarp or sarcocarp develops after endocarp differentiation. The endocarp is partly spongy and partly woody. The spongy endocarp contains most of the vascular tissue and fills the cavities and grooves of the intricately sculptured outer woody endocarp. The inner woody endocarp and adjacent woody, endocarpal operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall. The bitegmic, anatropous ovule develops into a derived, exalbuminous seed with an undifferentiated seed-coat. An extensive chalaza, extensive hypostase sensu lato and the raphe are important in the development of the seed-coat. The pericarp and seed-coat of H. caffrum is compared with those of Sclerocarya birrea subsp. caffra and Lannea discolor . The close phylogenetic relationship of these three species of the Spondieae is reaffirmed. The marked similarities in pericarp and seed structure between H. caffrum and species of the genus Spondias are noted.  相似文献   

11.
Interpretation of the anatomical structure of the ovary and fruit of the Orchidaceae family is still controversial, which makes it difficult to understand the development and dehiscence of the fruit. The genus Oncidium is polyphyletic and is currently the subject of taxonomic studies. In this study, we have investigated the anatomical development of the pericarp and seed of Oncidium flexuosum Sims to determine important diagnostic characters that, along with molecular data, can assist in defining this group. We have found a new anatomical characteristic of the family: the presence of precursor cells for fruit dehiscence, which were visible from the beginning of development and located on the outer walls of the sterile valves. In contrast with what has been observed by different authors with other species, in the mature fruit of O. flexuosum, only the endocarp of the fertile valves and a few cells near the exocarp and the vascular bundle in the sterile valves show parietal thickening, while the rest remains parenchymatous. During the development of the ovule and embryo, we have shown that the embryonic sac of this species has eight nuclei and that the embryo has a long and elaborate suspensor.  相似文献   

12.
In Lithraea brasiliensis Marchand the exocarp is characterized by brachysclereids and the parenchymatous mesocarp by large secretory ducts; inner sclerenchymatous ridges are absent in die mesocarp. The stratified endocarp s. s. comprises a crystal layer, palisade-like brachysclereids, osteosclereids and macrosclereids. The osteosclereids are characterized by a distinct light line or linea lucida , which has hitherto also been recorded in a species of Rhus. In the partially pachychalazal seed, a typical Anacardiaceae-like hypostase typifies the chalazal part of the seed coat, while the integumentary seed coat reveals a well preserved outer epidermis, a compressed endotegmen and well developed inner cuticular layer. Our comparison of die characters of the ovule, fruit and seed of L. brasiliensis with those of various species of Rhus and other genera of the tribe Rhoeae (some closely related) presents evidence that L. brasiliensis could be most closely associated with the genus Rhus.  相似文献   

13.
Mature seed coats of representatives of all three genera ofMusaceae were analysed for macromolecular composition with variousmass spectrometric techniques and compared with scanning electronmicroscopy and light microscopy in combination with histochemicaltechniques. Mass spectrometric techniques are more sensitiveand more specific in identifying macromolecular compounds thanhistochemical methods. The macromolecular ‘fingerprint’of the seed coats of Musaceae showed unique components of aromaticphenols. The seed coat structure of all three genera is homogeneouswithin the Musaceae. It is characteristic at the family leveland most complex within the Zingiberales. Very remarkable arethe separation of the outer cell walls from the exotestal layer,exposing a secondary surface with silica crystals, and the relativelythick mesotesta which protects the seed, e.g. against the bitingforces and passage through the digestive tracts of dispersingagents. Germination takes place with an operculum and is facilitatedby a predetermined rupture layer in the micropylar collar. Themusaceaous seed presents a good example of the solution of conflictingdemands of protection and germination. Musaceae; Musa; Ensete; Musella; seed coat; pyrolysis (gas chromatography) mass spectrometry; histochemistry; anatomy; macromolecules; silica; lignin; cellulose; vegetable polyphenols; operculum; germination  相似文献   

14.
The pedicel of the female flower of Rhus lancea is distinctly articulated and usually carries three bracteoles. In the linear tetrad the micropylar megaspore forms the 8-nucleate embryo sac of the Oenothera -type. The single, bitegmic ovule is anatropous. The ripe, loose, papery exocarp consists mainly of the outer epidermis and a sclerified hypodermis. The mesocarp is not a typical sarcocarp, since the ridges and the inner layers are sclerenchymatous. The endocarp, originating from the inner epidermis, consists of four layers and its structure and microchemistry emphasize the close alliance of Rhus with other genera of the section Rhoideae. The endotestal seed indicates a phylogenetic affinity between the Anacardiaceae and the Burseraceae.  相似文献   

15.
The ovule primordium of Costus is trizonate and both its integuments are dermally initiated. With other evidence, this strongly suggests that most, if not all, monocotyledons have dermally initiated integuments, indicating a derived status. The mature seed coat of Costus is completely formed by the outer integument and its principal mechanical layer is the endotesta.
The seed of Costus has an aril, an operculum and a micropylar collar. These structures, characteristic of zingiberalean seeds, are each initiated in a different, specific cell layer of the exostome. The aril is completely dermally initiated. The parenchymatic part of the operculum and the micropylar collar are of dual origin, namely dermal at me integumentary region and subdermal at the raphe.  相似文献   

16.
用常规石蜡制片对黄顶菊(Flaveria bidentis(L.) Kuntze)大孢子发生、雌配子体和胚胎的发育过程进行了观察.黄顶菊雌蕊柱头二裂,2心皮,1室,单胚珠,基生胎座,单珠被,薄珠心,倒生胚珠,具发达的珠被绒毡层.珠心表皮下分化出孢原细胞,孢原细胞直接发育为大孢子母细胞,大孢子母细胞减数分裂形成直列四分体...  相似文献   

17.
Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia.  相似文献   

18.
H. Nybom 《Oecologia》1987,72(4):562-568
Summary Pseudogamous blackberry species are polyploid and usually exhibit meiotic irregularities causing severe reduction in pollen viability. When species means were compared, relative seed set was strongly correlated with the number of good pollen grains produced per flower divided by the number of ovules (good-pollen/ovule ratio).Partial correlation analysis for percentage viable pollen and relative seed set, controlling for good-pollen/ovule ratio, revealed an almost significant relationship, presumably because meiotic irregularities have a similar effect on both pollen viability and the viability of meiotically derived embryo sacs. Seed germination, on the other hand, showed no relationship with relative seed set or with pollen viability.The automatic selfing capacity exhibited by most of these blackberry species does not appear to be related to either pollen production or relative seed set.  相似文献   

19.
MANNING, J. C. & BRITS, G. J., 1993. Seed coat development in Leucospermum cordifolium (Knight) Fourcade (Proteaceae) and a clarification of the seed covering structures in Proteaceae . The development of the seed coat and pericarp is studied in Leucospermum cordifolium from ovule to mature seed. The ovule and seed are characterized by a tegmic pachychalaza. The pericarp is adnate to the integuments from anthesis and remains unthickened to maturity. The outer integument forms the seed coat and the seed is endotestal: the outer epidermis becomes tanniniferous and the inner epidermis develops into a crystalliferous palisade. The inner integument degenerates at an early stage. Examination of the literature reveals that the crystal palisade layer of the outer integument has been erroneously assumed to constitute an endocarp. This finding indicates that a re-interpretation of all published information on the seed coat in indehiscent Proteaceae is necessary before any speculations on the phylogenetic significance of the seed coat can be entertained.  相似文献   

20.
Pre-embryonic and embryonic stages and seed developments were studied in the diploids Hylocereus monacanthus and Hylocereus undatus and the tetraploid Hylocereus megalanthus. Ovule morphology was similar among species except for micropyle entrance. H. monacanthus had the thickest and most robust suspensor. Embryo developmental time, measured from fertilization to maturity, was significantly more prolonged in H. megalanthus. Typical to Cactaceae, the seed coat was formed by one layer of sclerenchymatous cells, but was more lignified in H. megalanthus. Morphological features common to all species included (1) cellular type endosperm with independent patterns of development in the chalazal and micropylar zones, forming a haustorium layer from the chalazal zone to the embryo; (2) an endothelial layer surrounding the embryo sac almost complete; (3) a nucellar summit growing into the micropyle; and (4) a placental obturator and a funicle connecting the ovarian tissue to the ovule. Seed development was typically endospermic (exendospermic orthodox seeds). Anomalies included two egg cells in the same embryo sac, two embryos developing in the same ovule, and embryos developing from the chalazal pole region. Total seed number and seed viability were significantly lower in H. megalanthus than in the other two taxa. Embryos at different developmental stages were observed in aborted H. megalanthus seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号