首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Vascular tissue differentiation is essential to enable plant growth and follows well-structured and complex developmental patterns. Based on recent data obtained from Arabidopsis and Populus, advances in the understanding of the molecular basis of vascular system development are reviewed. As identified by forward and/or reverse genetics, several gene families have been shown to be involved in the proliferation and identity of vascular tissues and in vascular bundle patterning. Although the functioning of primary meristems, for example the shoot apical meristem (SAM), is well documented in the literature, the genetic network that regulates (pro)cambium is still largely not deciphered. However, recent genome-wide expression analyses have identified candidate genes for secondary vascular tissue development. Of particular interest, several genes known to regulate the SAM have also been found to be expressed in the vascular cambium, highlighting possible overlapping regulatory mechanisms between these two meristems.  相似文献   

2.
3.
4.
Stem cell function during plant vascular development   总被引:1,自引:0,他引:1  
While many regulatory mechanisms controlling the development and function of root and shoot apical meristems have been revealed, our knowledge of similar processes in lateral meristems, including the vascular cambium, is still limited. Our understanding of even the anatomy and development of lateral meristems (procambium or vascular cambium) is still relatively incomplete, let alone their genetic regulation. Research into this particular tissue type has been mostly hindered by a lack of suitable molecular markers, as well as the fact that thus far very few mutants affecting plant secondary development have been described. The development of suitable molecular markers is a high priority in order to help define the anatomy, especially the location and identity of cambial stem cells and the developmental phases and molecular regulatory mechanisms of the cambial zone. To date, most of the advances have been obtained by studying the role of the major plant hormones in vascular development. Thus far auxin, cytokinin, gibberellin and ethylene have been implicated in regulating the maintenance and activity of cambial stem cells; the most logical question in research would be how these hormones interact during the various phases of cambial development.  相似文献   

5.
6.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   

7.
Organophosphate hydrolase (OPH, E.C. 3.1.8.1; encoded by the bacterial opd gene) provides a new scoreable and selectable genetic marker system for use in plant cell culture and regenerated plant tissue. OPH hydrolyzes a wide range of substrates that produce visually detectable products, which can be readily quantified in biological tissues. A variety of different OP compounds, both herbicides and pesticides, have been identified as acceptable enzymatic substrates, which can be used to generate transgenic markers for various types of plant tissues. For example, transgenic leaf tissue was easily differentiated from non-transgenic tissue by a simple fluorescent assay utilizing the OP insecticide coroxon. Transformed callus and intact whole seed could be easily distinguished from non-transformed tissue using novel non-destructive methods which allowed callus or seeds to grow and/or to germinate after phenotypic scoring with non-herbicidal OP insecticides such as paraoxon. In addition to being used as a scoreable phenotypic markers with various OP pesticides, the OP compounds Haloxon and Bensulide (Bensumec-4LF) were effective as positive selection agents for callus and germinating seeds.  相似文献   

8.
Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness. Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively. On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy. Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood. Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes. Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth. We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant, upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem. Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem. We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes. Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling, cell division and plant secondary tissue growth. These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.  相似文献   

9.
Parasitic plants in the Orobanchaceae invade host plant roots through root organs called haustoria. Parasite roots initiate haustorium development when exposed to specific secondary metabolites that are released into the rhizosphere by host plant roots. While molecular approaches are increasingly being taken to understand the genetic mechanism underlying these events, a limitation has been the lack of a transformation system for parasitic plants. Since the haustorium development occurs in roots of Orobanchaceae, root cultures may be suitable material for transient or stable transformation experiments. To this end, root cultures were obtained from explants, and subsequently calluses, from the hemiparasitic plant Triphysaria versicolor. The cultured roots retained their competence to form haustoria when exposed to host roots, host root exudates, or purified haustorium-inducing factors. The root culture haustoria invaded host roots and initiated a vascular continuity between the parasite and host roots. The ontogeny of haustoria development on root cultures was indistinguishable from that on seedlings roots. Root cultures should provide useful material for molecular studies of haustorium development.  相似文献   

10.
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.  相似文献   

11.
12.
13.
14.
Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at the molecular level, viz., changes in DNA methylation and alterations of histone methylation or acetylation. Various studies have been carried out with animals, and with plant cells or tissues that have grown in tissue culture but only little work has been done with shoots generated by axillary branching. We present various molecular methods that are being used to measure epigenetic variation. In micropropagated plants mostly differences in DNA methylation have been examined. Epigenetic changes are thought to underlie various well-known tissue-culture phenomena including rejuvenation, habituation, and morphological changes such as flower abnormalities, bushiness, and tumorous outgrowths in, among others, oil palm, gerbera, Zantedeschia and rhododendron.  相似文献   

15.
水稻转座子研究进展   总被引:1,自引:1,他引:0  
转座子是植物基因组的重要组成部分, 对于研究植物基因组进化等具有重要意义。随着水稻全基因组测序计划的开展和完成, 水稻转座子研究取得了极大进展, 目前已经在水稻基因组中发现了几乎所有类型的转座子, 约占水稻基因组的35%。在正常情况下, 大多数水稻转座子不具有转座活性, 但是在特定的条件下(如组织培养或辐射等), 水稻基因组中沉默的转座子可以被激活, 从而可能导致插入突变并影响基因的表达。在水稻中已鉴定出6个有活性的转座子, 其中Tos17已被应用到水稻功能基因组研究中。转座子序列的新的分子标记转座子展示(transposon display, TD)现已被开发, 并在水稻遗传作图和遗传分化研究中得到应用  相似文献   

16.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

17.
Surfing along the root ground tissue gene network   总被引:1,自引:0,他引:1  
  相似文献   

18.
A Genomic and Molecular View of Wood Formation   总被引:1,自引:0,他引:1  
Wood formation is a process derived from plant secondary growth. Different from primary growth, plant secondary growth is derived from cambium meristem cells in the vascular and cork cambia and leads to the girth increase of the plant trunk. In the secondary growth process, plants convert most of photosynthesized products into various biopolymers for use in the formation of woody tissues. This article summarizes the new developments of genomic and genetic characterization of wood formation in herbaceous model plant and tree plant systems. Genomic studies have categorized a collection of the genes for which expression is associated with secondary growth. During wood formation, the expression of many genes is regulated in a stage-specific manner. The function of many genes involved in wood biosyntheses and xylem differentiation has been characterized. Although great progress has been achieved in the molecular and genomic understanding of plant secondary growth in recent years, the profound genetic mechanisms underlying this plant development remain to be investigated. Completion of the first tree genome sequence (Populus genome) provides a valuable genomic resource for characterization of plant secondary growth.  相似文献   

19.
20.
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号